Towards a quantum Monte Carlo for lattice systems
DOI:
https://doi.org/10.31349/SuplRevMexFis.1.3.23Keywords:
Quantum Monte Carlo, spin-1 system, Heisenberg model, optical lattices.Abstract
In this work we build the foundations of a quantum Monte Carlo as a stochastic numerical method to solve lattice many-body quantum systems with nearest-neighbor interactions at most. As motivation, we briefly describe the bilinear-biquadratic Heisenberg model with an external field, for spin-1 particles, as an effective Hamiltonian of the Bose-Hubbard model with an external quadratic Zeeman field in the Mott insulator phase at unit filling. Then, we discuss how to implement the world line Monte Carlo with local updates to circumvent the difficulties that arise on these type of systems by mapping the quantum partition function into the one of an effective classical model, in one additional dimension, given by the imaginary time evolution of the system. Such a mapping is performed by means of the Suzuki-Trotter decomposition, which transforms the original partition function into a summation of weights given by the classical configurations. Later, we present a set of observables that can be measured through this method and show how to use a Metropolis update scheme to accomplish the measurements. At last, we present the maximization of the configuration weights for three parameter sets as the first and relevant step to perform future measurements.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Santiago Figueroa-Manrique, Karen Rodríguez-Ramírez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.