Study of finite fermionic chains with edge modes using an appropriate momentum representation
DOI:
https://doi.org/10.31349/SuplRevMexFis.1.3.36Keywords:
Su-Schrieffer-Heeger model, spinless fermions, optical lattices, Bogoliubov-de Gennes formalism.Abstract
This work is based on the Su-Schrieffer-Heeger model, which describes a system of non-interacting polarized fermions, i.e. without spin, moving in a one-dimensional optical superlattice with fixed boundary conditions. Starting from the Hamiltonian of the system in second quantization, in which the optical lattice has discretized the space, and taking into account that the basis that diagonalizes the kinetic energy is the one of momentum, we perform the discrete sine transform type-I, which respects the hard-wall boundary conditions of the system and allows us to express
our Hamiltonian in the momentum basis, in such a way that we can think that it is possible to extend the study to an arbitrary number of sites. Finally we apply the Bogoliubov-de Gennes formalism getting the dispersion relation and the bare vertex function where together they form the couplings matrix. By diagonalizing this matrix, we visualize the parameter set where the system hosts zero energy modes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Nadia Daniela Rivera Torres, Karen Cecilia Rodríguez Ramírez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.