Chemical speciation of lead adsorbed onto volcanic ashes by ICP-OES and XANES

Authors

  • Bolie Blixen Bang University of Yaounde I, Faculty of Sciences, Yaounde, Cameroon
  • Bridinette Thiodjio Sendja University of Yaounde I, National Advanced School of Engineering of Yaounde, Yaounde, Cameroon
  • Nahum Andrés Medellin-Castillo Universidad Autonoma de San Luis Potosi https://orcid.org/0000-0001-9245-8016
  • René Loredo Portales CONACYT – National Autonomous University of Mexico, Geology Institute, Regional Northwest Station, Hermosillo, Sonora, Mexico https://orcid.org/0000-0003-0493-4532
  • Gladis Judith Labrada Delgado Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C., San Luis Potosi, S.L.P., Mexico
  • Candy Carranza Alvarez Autonomous University of San Luis Potosi -Unidad Académica Multidisciplinaria Zona Huasteca, Cd. Valles, S.L.P., Mexico https://orcid.org/0000-0002-6456-3035
  • Ben Bolie Germain Hurbert University of Yaounde I, Faculty of Sciences, Yaounde, Cameroon
  • Roberto Leyva Ramos Autonomous University of San Luis Potosi, Faculty of Chemical Sciences, San Luis Potosi, S.L.P., Mexico
  • Simon Yobanny Reyes López Autonomous University of Ciudad Juarez, Juarez City, Chihuahua, Mexico

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.010602

Keywords:

X-ray absorption spectroscopy, volcanic ashes, microprecipitation, ion exchange

Abstract

This study focuses on the assessment of the VA materials from the Cameroon volcanic line (CVL) for their use as natural adsorbents to remove Pb(II) pollutant from aqueous solutions. The chemical speciation of lead adsorbed onto volcanic ashes based by means of inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray absorption near edge spectroscopy (XANES) study is reported. The ashes from CVL are used to remove lead in aqueous solutions. The maximum value of the adsorption capacity of lead in volcanic ashes was 7.60 mg g-1 at pH 5. Regarding the adsorption process, the contribution of the mixture lead components after adsorption and a strong interaction of adsorbed lead with the surface of volcanic ashes were proven. The chemical elements present in the volcanic ash and their concentrations are determined by ICP-OES. Chemical speciation was carried out measuring Pb saturated volcanic ash sample at the L3 edge (13035 eV) at the XAFS beam line in Elettra Sincrotrone Trieste. The XANES measurements showed that the lead removal occurred mainly by microprecipitation of lead acetate and carbonate associated with a possible ion-exchange forming lead monoxide.

Author Biography

Nahum Andrés Medellin-Castillo, Universidad Autonoma de San Luis Potosi

Faculty of Engineering, San Luis Potosi, S.L.P., Mexico

References

G. Cai, T. Noguchi, H. Degée, J. Zhao, R. Kitagaki, Volcano-related materials in concretes: a comprehensive review, Environ. Sci. Pollut. Res. 23 (2016) 7220, https://doi.org/10.1007/s11356-016-6161-z

V.E. Manga, C.M. Agyingi, C.E. Suh, Trace Element Soil Quality Status of Mt. Cameroon Soils, Adv. Geol. (2014), https://doi.org/10.1155/2014/894103

H.K. Tchakouté, S. Kong, J.N.Y Djobo, L.N. Tchadjié, D. Njopwouo, A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity, Ceram. Int. 41 (2015) 12568, https://doi.org/10.1016/j.ceramint.2015.06.073

J.N. Yankwa Djobo, A. Elimbi, H. Kouamo, H.K. Tchakouté, S. Kumar, Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions, J. Mater. Sci. (2016) 10301, https://doi.org/10.1007/s10853-016-0257-1

I.L. Botto, M.E. Canafoglia, D. Gazzoli, M.J. González, Spectroscopic and Microscopic Characterization of Volcanic Ash from Puyehue-(Chile) Eruption: Preliminary Approach for the Application in the Arsenic Removal, J. Spectrosc. (2013) https://doi.org/10.1155/2013/254517

N. Jaafarzadeh, H. Amiri, M. Ahmadi, Factorial experimental design application in modification of volcanic ash as a natural adsorbent with Fenton process for arsenic removal, Environ. Technol. 33(2) (2012) 159, https://doi.org/10.1080/09593330.2011.554887

A. Esmaili, S. Nasseri, A.H. Mahvi, R. Atash-Dehghan, Adsorption of lead and zinc ions from aqueous solutions by volcanic ash soil (VAS), Proceedings of the 8th international conference on Environmental Science and Technology (2003), pp. 193-199.

C.L.S. Wiseman, F. Zereini, Airborne particulate matter, platinum group elements and human health: A review of recent evidence, Sci. Total Environ. 407 (2009) 2493, https://doi.org/10.1016/j.scitotenv.2008.12.057

G. Chen, L. Shi, Removal of Cd(II) and Pb(II) ions from natural water using a low-cost synthetic mineral: behavior and mechanisms, RSC Adv. 7 (2017) 43445, https://doi.org/10.1039/C7RA08018B

J.K. Mbadcam, S.G. Anagho, J. Ndi-nsami, A.M. Kammegne, Kinetic and equilibrium studies of the adsorption of lead (II) ions from aqueous solution onto two Cameroon clays: kaolinite and smectite, J. Environ. Chem. Ecotoxicol. 3(11) (2011) 290.

J. Li, L. Zheng, S.-L. Wang, Z. Wu, W. Wu, N.K. Niazi, S.M. Shaheen, J. Rinklebe, N. Bolan, Y. S. Ok, H. Wang, Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation, Sci. Total Environ. 672 (2019) 572, https://doi.org/10.1016/j.scitotenv.2019.04.003

F. Farges, H. Keppler, A-M Flan, P. Lagarde, Sulfur K-edge XANES study of S sorbed onto volcanic ashes, J. Phys.: Conf. Ser. 190 (2009) 012177, https://doi.org/10.1088/1742-6596/190/1/012177

A. Funatsuki, M.Takaoka, K. Oshita, N. Takeda, Methods of Determining Lead Speciation in Fly Ash by X-ray Absorption Fine-Structure Spectroscopy and a Sequential Extraction Procedure, Anal. Sci., 28(5) (2012) 481, https://doi.org/10.2116/analsci.28.481

N.A. Medellin-Castillo, E. Padilla-Ortega, L.D. Tovar-Garcıa, R. Leyva-Ramos, R. Ocampo-Pérez, F. Carrasco-Marın, M.S. Berber-Mendoza, Removal of fluoride from aqueous solution using acid and thermally treated bone char, Adsorption 22 (2016) 951, https://doi.org/ 10.1007/s10450-016-9802-0

F. Castillo, M. Avalos-Borja, H. Jamieson, H., G. Hernández-Bárcenas, N. Martínez-Villegas, Identification of diagenetic calcium arsenates using synchrotron-based micro X-ray diffraction, B. Soc. Geol. Mex. 67(3) (2015) 479.

A. Di Cicco, G. Aquilanti, M. Minicucci, E. Principi, N. Novello, A. Cognigni, L. Olivi, Novel XAFS capabilities at ELETTRA synchrotron light source J. Phys.: Conf. Ser., 190 (2009) 012043.

B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Rad., 12 (2005) 537, https://doi.org/10.1107/S0909049505012719

V.B. Che, K. Fontijn, G.G.J. Ernst, M. Kervyn, M. Elburg, E. Van Ranst, C.E. Suh, Evaluating the degree of weathering in landslide-prone soils in the humid tropics: the case of Limbe, S W Cameroon, Geoderma 170 (2012) 378, https://doi.org/10.1016/j.geoderma.2011.10.013

G.-L. Zhang, J.-H. Pan, C.-M. Huang, Z.-T., Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China, Rev. Mex. Cienc. Geol. 24(2) (2007) 261.

B.A. Fonge, E.N. Nkoleka, F.Z. Asong, S.A. Ajonina, V.B. Che, Heavy metal contamination in soils from a municipal landfill, surrounded by banana plantation in the eastern flank of Mount Cameroon, Afr. J. Biotechnol., 16(25) (2017) 1391, https://doi.org/10.5897/AJB2016.15777

C. Jadia, M.H. Fulekar, Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum), J. Appl. Biosci., 10 (2008) 491.

O. El Hamiani, H. El Khalil, K. Lounatea, C. Sirguey, M. Hafidi, G. Bitton, C. Schwartz, A. Boularbah, Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco, J. Hazard. Mater., 177 (2010) 755, https://doi.org/10.1016/j.jhazmat.2009.12.096

D. Li, Y. Tang, T. Deng, K. Chen, D. Liu, F. Cheng, Mineralogy of the No. 6 Coal from the Qinglong Coalfield, Guizhou Province, China. Energ. Explor. Exploit., 26(6) (2008) 347, https://doi.org/10.1260/014459808788262279

USEPA Test methods for evaluating solid waste, Method EPA1311: Toxicity Characteristic Leaching Procedure (TCLP) SW-846, Office of Solid Waste and Emergency Response, United States Environmental Protection Agency (1990), Washington, DC, USA.

N.V. Chukanov, A.D. Chervonnyi, Infrared spectroscopy of minerals and related compounds, Spri. Mineralogy, (2016), https://doi.org/10.1007/978-3-319-25349-7

S. Petit, J.L. Robert, J.L., A. Decarreau, G. Besson, O. Graudy, F. Martin, Apport des méthodes spectroscopiques à la caractérisation des phyllosilicates 2/1, Bull. Centre Rech. Expl. Prod. Elf Aquitaine, 19(1) (1995) 119.

B. Stuart, Infrared Spectroscopy: Fundamentals methods. Analytical techniques in the sciences, (2004), John Wiley & Sons, Ltd, https://doi.org/10.1002/0470011149

Z.R. Holan, B. Volesky, Biosorption of lead and nickel by biomass of marine algae. Biotechnol. Bioeng., 43(11) (1994) 1001, https://doi.org/10.1002/bit.260431102

S. Shahmohammadi-Kalalagh, H. A.H. Nazemi, M. Manshouri, Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite. Caspian J. Environ. Sci. 9(2) (2011) 243.

M. Al-Harahsheh, R. Shawabkeh, A. Al-Harahsheh, K. Tarawneh, M.M. Batiha, Surface modification and characterization of Jordanian kaolinite: application for lead removal from aqueous solutions, Appl. Surf. Sci., 255 (2009) 8098, https://doi.org/10.1016/j.apsusc.2009.05.024

M. Eloussaief, W. Hamza, N. Kallel, M. Benzina, Wastewaters decontamination: mechanisms of Pb(II), Zn(II), and Cd(II) competitive adsorption on tunisian smectite in single and multi-solute systems, Environ. Prog. Sustain., 32 (2013) 229, https://doi.org/10.1002/ep.11609

F.A Dawodu, G.K. Akpomie, P.C.N. Ejikeme, Equilibrium, thermodynamic and kinetic studies on the adsorption of lead(II) from solution by ‘‘Agbani Clay”, Res. J. Eng. Sci. 1(6) (2012) 9.

J. Rose, I. Moulin, J.-L. Hazemann, A. Masion, P. M. Bertsch, J.-Y. Bottero, F. Mosnier, C. Haehnel, X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates: 1. Case of Lead, Langmuir 16(25) 2000 9900, https://doi.org/10.1021/la0005208

N.A. Medellin-Castillo, R. Leyva-Ramos, R. Ocampo-Perez, R.F. Garcia de la Cruz, A. Aragon-Piña, J.M. Martinez-Rosales, R.M. Guerrero-Coronado, L. Fuentes-Rubio, Adsorption of Fluoride from Water Solution on Bone Char, Ind. Eng. Chem. Res., 46(26) (2007) 9205, https://doi.org/10.1021/ie070023n

X. Behrens, 8th International Conference on X-ray Absorption Spectroscopy, Berlin, 1994.

J. Somasundaram, R. Krishnasamy, S. Mahimairaja, P. Savithri, Dynamics of lead (Pb) in different soil conditions, J. Environ. Sci. Eng., 48(2) (2006) 123.

S. Denys, J. Caboche, K. Tack, P. Delalain, Bioaccessibility of lead in high carbonate soils. J. Environ. Sci. Health, Part A, 42(9) (2007) 1331, https://doi.org/10.1080/10934520701435569

X. Yang, G. Xu, H. Yu, Removal of lead from aqueous solutions by ferric activated sludge-based adsorbent derived from biological sludge. Arabian J. Chem. 12(8) (2019) 4142, https://doi.org/10.1016/j.arabjc.2016.04.017

Downloads

Published

2022-02-18

How to Cite

1.
Blixen Bang B, Thiodjio Sendja B, Medellin-Castillo NA, Loredo Portales R, Labrada Delgado GJ, Carranza Alvarez C, Germain Hurbert BB, Leyva Ramos R, Reyes López SY. Chemical speciation of lead adsorbed onto volcanic ashes by ICP-OES and XANES. Supl. Rev. Mex. Fis. [Internet]. 2022 Feb. 18 [cited 2025 Jan. 7];3(1):010602 1-. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/5949

Issue

Section

06 I National Congress of the Mexican Society of Synchrotron Light