Aspectos dinámicos en el diseño del anillo de almacenamiento del sincrotrón mAspectos dinámicos en el diseño del anillo de almacenamiento del sincrotrón mexicanoexicano

Authors

  • H. J. Villarreal Universidad Autónoma del Estado de Morelos
  • N. Méndez Universidad Autónoma del Estado de Morelos
  • J. I. Fuentes Universidad Autónoma del Estado de Morelos
  • C. E. Mendoza Tecnológico de Zacatepec
  • E. Sánchez Facultad de Ciencias-UNAM
  • A. Flores-Tlalpa Tecnológico de Monterrey
  • J. Hernández Instituto de Ciencias Físicas-UNAM
  • M. Moreno Instituto de Física-UNAM
  • Armando Antillon Instituto de Ciencias Físicas-UNAM

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.010603

Keywords:

Magnetic lattice designs, synchrotron light source

Abstract

Se investigan varios diseños de redes magnéticas para la fuente de luz sincrotrón mexicana, los cuales hacen uso de algunos recursos de diseño de las actualización recientes de fuentes de luz sincrotrón, tales como celdas acromáticas múltiples, dipolos con gradiente longitudinal, dipolos invertidos y esquemas híbridos. Mediante el uso de bloques fijos de imanes (tipo LEGO), también, se investiga la posibilidad de reducir aún más la emitancia de algunos diseños.

References

R. P. Walker. Potencialities and compromises in the design of diffraction limited storage rings. International ICFA mini-Workshop on Nonlinear dynamics and Collective Effects in particle beam physics, 19-22 September2017.

D. Einfeld and M. Plesko. A modified qba optics for low emittance storage rings. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 335(3):402–416, 1993.

D. Einfeld and M. Plesko. Design of a diffraction-limited light source. Proc. SPIE, Electron-beam sources of High-Brightness Radiation, 1993.

D. Einfeld, M. Plesko, and J. Schaper. First multi-bend achromat lattice consideration. Jnl of Synchrotron Radiation, 21:856–861, 2014.

R. Bartolini, R. Hettel, and F. Pérez. Comunicación privada. III Mexican Workshop on Accelerator Physics, Huatulco, 2014.

C. Steier. Possibilities for a diffraction-limited upgrade of a soft x-ray light source. Syn-chrotronRadiationNews,27(6):18–22, 2014. doi:10.1080/08940886.2014.970934.URLhttps://doi.org/10.1080/08940886.2014.970934.

A. Streun. Opa, lattice design code. https://ados.web.psi.ch/opa/, 2012.

L. Farvacque, N. Carmignani, J. Chavanne, A. Franchi, G. Le Bec, S. Liuzzo, B. Nash, T. Perron, and P. Raimondi. A low-emittance lattice for the esrf.IPAC’13,pages 79–81, 2013.

Rudolf Dimper, Harald Reichert, Pantaleo Raimondi ,Luis Sánchez Ortiz, Francesco Sette, and Jean Susini. Esrf upgrade programme phase-ii (2015 - 2022). page 7, 2014.URLhttps://www.esrf.fr/Apache_files/Upgrade/ESRF-orange-book.pdf.

Yue-Mei Peng Gang Xu, Yi Jiao. Esrf-type lattice de-sign and optimization for the high energy photon source.Chinese Physics C, 40:027001, 2016.

Robert Hettel (APS-U Project Director).The advanced photon source upgrade plan approved. Synchrotron Radiation News, 32:34–35, 2019.doi:10.1080/08940886.2019.1582289.URLhttps://doi.org/10.1080/08940886.2019.1582289.

C. Abraham, L. Alianelli, M. Apollonio, R. Bartolini,J. Bengtsson, et al. Diamond-ii - conceptual design report. 2019. URLhttps://www.diamond.ac.uk/dam/jcr:ec67b7e1-fb91-4a65-b1ce-f646490b564d/Diamond-II%20Conceptual%20Design%20Report.pdf.

L.O. Dallin. Design considerations for an ultralow emittance storage ring for the Canadian light source.9th International Particle Accelerator Conference IPAC2018, doi:10.18429/JACoW-IPAC2018-TUPMF038:1334, 2018.

M. Borland. elegant: A flexible sdds-compliant code for accelerator simulation. Advanced Photon Source LS-287,2000.

Les Dallin. Cls 2.2: Ultra-Brilliant Round Beams Using Pseudo Longitudinal Gradient Bends. In10thInternational Particle Accelerator Conference, page TUPGW004, 2019.doi:10.18429/JACoW-IPAC2019-TUPGW004.

A. Streun. Comunicación privada. la versión v.b025 ha sido amablemente compartida por a. streun. 2019.

A. Wrulich. Comunicación privada. 2019.

D. Einfeld, J. Schaper, and M. Plesko. Design of a diffraction limited light source (difl). Proceedings Particle Accelerator Conference, IEEE, 1:177–179, 1995.

R. Nagaoka and A. F. Wrulich. Emittance minimization with longitudinal dipole field variation. Nucl. Instrum. Methods Phys. Res. A, 575:292–304, 2007.

A. Streun. The anti-bend cell for ultralow emittance storage ring lattices. Nucl. Instrum. Methods Phys. Res. A,737:148–154, 2014.

Penghui Yang, Zhenghe Bai, Tong Zhang, Derong Xu,and Lin Wang. Design of a hybrid ten-bend-achromat lattice for a diffraction-limited storage ring light source. Nucl. Instrum. Methods Phys. Res. A, 943:162506, 2019.

Downloads

Published

2022-02-18

How to Cite

1.
Villarreal HJ, Méndez N, Fuentes JI, Mendoza CE, Sánchez E, Flores-Tlalpa A, Hernández J, Moreno M, Antillon A. Aspectos dinámicos en el diseño del anillo de almacenamiento del sincrotrón mAspectos dinámicos en el diseño del anillo de almacenamiento del sincrotrón mexicanoexicano. Supl. Rev. Mex. Fis. [Internet]. 2022 Feb. 18 [cited 2025 Jan. 22];3(1):010603 1-. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6009

Issue

Section

06 I National Congress of the Mexican Society of Synchrotron Light