Heavy quark hybrid decays


  • Abhishek Mohapatra Technical University-Munich




Quarkonium, heavy hybrids, exotic states, Born-Oppenheimer approximation, effective field theories


In order to understand the nature of the XYZ particles, theoretical predictions of the various XYZ decay modes are essential. In this work, we focus on the semi-inclusive decay of heavy quarkonium hybrids into traditional quarkonium in the Born-Oppenheimer EFT (BOEFT) framework. We find that our numerical results of the decay rates are different from the previous studies. We also develop a systematic framework in which the theoretical uncertainty can be systematically improved.


S. K. Choi et al. [Belle], Observation of a narrow charmoniumlike state in exclusive B ± → K±π+π−J/ψ decays, Phys. Rev. Lett. 91 (2003) 262001, https://doi.org/10.1103/PhysRevLett.91.262001.

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, The XY Z states: experimental and theoretical status and perspectives, Phys. Rept. 873 (2020) 1, https://doi.org/10.1016/j.physrep.2020.05.001.

P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104.

W. E. Caswell and G. P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD, and Other Field Theories, Phys. Lett. B 167 (1986) 437, https://doi.org/10.1016/0370-2693(86)91297-9.

G. T. Bodwin, E. Braaten and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125, [erratum: Phys. Rev. D 55, 5853 (1997)] https://doi.org/10.1103/PhysRevD.55.5853.

N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An Effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275, https://doi.org/10.1016/S0550-3213(99)00693-8.

N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective Field Theories for Heavy Quarkonium, Rev. Mod. Phys. 77 (2005) 1423, https://doi.org/10.1103/RevModPhys.77.1423.

K. J. Juge, J. Kuti and C. J. Morningstar, Gluon excitations of the static quark potential and the hybrid quarkonium spectrum, Nucl. Phys. B Proc. Suppl. 63 (1998) 326, https://doi.org/10.1016/S0920-5632(97)00759-7.

G. S. Bali and A. Pineda, QCD phenomenology of static sources and gluonic excitations at short distances, Phys. Rev. D 69 (2004) 094001 https://doi.org/10.1103/PhysRevD.69.094001.

E. Braaten, C. Langmack and D. H. Smith, Born-Oppenheimer Approximation for the XYZ Mesons, Phys. Rev. D 90 (2014) 014044, https://doi.org/10.1103/PhysRevD.90.014044.

R. Oncala and J. Soto, Heavy Quarkonium Hybrids: Spectrum, Decay and Mixing, Phys. Rev. D 96 (2017) 014004, https://doi.org/10.1103/PhysRevD.96.014004.

M. Berwein, N. Brambilla, J. Tarrus Castell ´ a and A. Vairo, Quarkonium Hybrids with Nonrelativistic Effective Field Theories, Phys. Rev. D 92 (2015) 114019, https://doi.org/10.1103/PhysRevD.92.114019.

N. Brambilla, G. Krein, J. Tarrus Castellà and A. Vairo, Born-Oppenheimer approximation in an effective field theory language, Phys. Rev. D 97 (2018) 016016, https://doi.org/10.1103/PhysRevD.97.016016.

N. Brambilla, W. K. Lai, J. Segovia, J. Tarrus Castellà and A. Vairo, Spin structure of heavy-quark hybrids, Phys. Rev. D 99 (2019) 014017, [erratum: Phys. Rev. D 101 (2020) 099902] https://doi.org/10.1103/PhysRevD.99.014017.

A. Pineda, Determination of the bottom quark mass from the Upsilon(1S) system, JHEP 06 (2001) 022, https://doi.org/10.1088/1126-6708/2001/06/022.

N. Brambilla, W. K. Lai, A. Mohapatra, and A. Vairo, In preparation, preprint-no. TUM-EFT 164/21.

J. T. Castellà and E. Passemar, Exotic to standard bottomonium transitions, Phys. Rev. D 104 (2021) 034019, https://doi.org/10.1103/PhysRevD.104.034019.




How to Cite

Mohapatra A. Heavy quark hybrid decays. Supl. Rev. Mex. Fis. [Internet]. 2022 May 3 [cited 2022 Dec. 9];3(3):0308038 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6150