On the mass of the glueballonium

Authors

  • Enrico Trotti Jan Kochanowski University
  • Francesco Giacosa Jan Kochanowski University

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308014

Keywords:

hadrons, glueballs, bound states

Abstract

According to lattice simulations and other theoretical approaches, the scalar glueball is the lightest state in the Yang-Mills sector of QCD. Since within this sector the scalar glueball is stable, the scattering between two glueballs is a well-defined process. Moreover, a glueball-glueball bound state, called glueballonium, might exist if the attraction turns out to be large enough. In this work, we concentrate on the formation of the glueballonium in the context of the dilaton potential. In particular, we investigate the parameter values for which such a glueballonium emerges.

References

A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn and V. F. Weisskopf, A New Extended Model of Hadrons, Phys. Rev. D 9 (1974) 3471, https://10.1103/PhysRevD.9.3471.

R. L. Jaffe and K. Johnson, Unconventional States of Confined Quarks and Gluons, Phys. Lett. B 60 (1976) 201, https://10.1016/0370-2693(76)90423-8.

R. L. Jaffe, K. Johnson and Z. Ryzak, Qualitative Features of the Glueball Spectrum, Annals Phys. 168 (1986) 344, https://10.1016/0003-4916(86)90035-7.

C. J. Morningstar and M. J. Peardon, The Glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509, https://10.1103/PhysRevD.60.034509. [arXiv:hep-lat/9901004 [hep-lat]].

Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73 (2006) 014516, https://10.1103/PhysRevD.73.014516. [arXiv:hep-lat/0510074 [hep-lat]].

M. Caselle, M. Hasenbusch, P. Provero and K. Zarembo, Bound states and glueballs in three-dimensional Ising systems, Nucl. Phys. B 623 (2002) 474, https://10.1016/S0550-3213(01)00644-7. [arXiv:hep-th/0103130 [hepth]].

N. Yamanaka, H. Iida, A. Nakamura and M. Wakayama, Dark matter scattering cross section and dynamics in dark Yang-Mills theory, Phys. Lett. B 813 (2021) 136056 https://10.1016/j.physletb.2020.136056. [arXiv:1910.01440 [hep-ph]].

N. Yamanaka, H. Iida, A. Nakamura and M. Wakayama, Glueball scattering cross section in lattice SU(2) Yang-Mills theory, Phys. Rev. D 102 (2020) 054507, https://10.1103/PhysRevD.102.054507. [arXiv:1910.07756 [hep-lat]].

N. Yamanaka, A. Nakamura and M. Wakayama, Interglueball potential in lattice SU(N) gauge theories, [arXiv:2110.04521 [hep-lat]].

F. Giacosa, A. Pilloni and E. Trotti, “Glueball-glueball scattering and the glueballonium, [arXiv:2110.05582 [hep-ph]].

A. A. Migdal and M. A. Shifman, Dilaton Effective Lagrangian in Gluodynamics, Phys. Lett. B 114 (1982) 445, https://10.1016/0370-2693(82)90089-2.

A. Salomone, J. Schechter and T. Tudron, Properties of Scalar Gluonium, Phys. Rev. D 23 (1981) 1143, https://10.1103/PhysRevD.23.1143.

S. Janowski, F. Giacosa and D. H. Rischke, Is f0(1710) a glueball?, Phys. Rev. D 90 (2014) 114005, https://10.1103/PhysRevD.90.114005. [arXiv:1408.4921 [hep-ph]].

F. E. Close and A. Kirk, Scalar glueball q anti-q mixing above 1-GeV and implications for lattice QCD, Eur. Phys. J. C 21 (2001) 531, https://10.1007/s100520100748. [arXiv:hep-ph/0103173 [hep-ph]].

F. Brünner, D. Parganlija and A. Rebhan, Glueball Decay Rates in the Witten-Sakai-Sugimoto Model, Phys. Rev. D 91 (2015) 106002, [erratum: Phys. Rev. D 93 (2016) 109903] https://10.1103/PhysRevD.91.106002. [arXiv:1501.07906 [hep-ph]].

A. Rodas et al. [JPAC], Scalar and tensor resonances in J/ψ radiative decays, [arXiv:2110.00027 [hep-ph]].

F. Giacosa, T. Gutsche, V. E. Lyubovitskij and A. Faessler, Scalar meson and glueball decays within a effective chiral approach, Phys. Lett. B 622 (2005), 277, https://10.1016/j.physletb.2005.07.016. [arXiv:hep-ph/0504033 [hep-ph]].

J. R. Ellis and J. Lanik, IS SCALAR GLUONIUM OBSERVABLE?, Phys. Lett. B 150 (1985) 289, https://10.1016/0370-2693(85)91013-5.

A. Di Giacomo, H. G. Dosch, V. I. Shevchenko and Y. A. Simonov, Field correlators in QCD: Theory and applications, Phys. Rept. 372 (2002) 319, https://10.1016/S0370-1573(02)00140-0. [arXiv:hep-ph/0007223 [hepph]].

D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons, Phys. Rev. D 87 (2013) 014011, https://10.1103/PhysRevD.87.014011. [arXiv:1208.0585 [hep-ph]].

G. W. Carter, P. J. Ellis and S. Rudaz, An Effective Lagrangian with broken scale and chiral symmetry: 2. Pion phenomenology, Nucl. Phys. A 603 (1996) 367, [erratum: Nucl. Phys. A 608 (1996) 514] https://10.1016/0375-9474(96)80007-E. [arXiv:nucl-th/9512033 [nucl-th]].

D. Parganlija, F. Giacosa and D. H. Rischke, Vacuum Properties of Mesons in a Linear Sigma Model with Vector Mesons and Global Chiral Invariance, Phys. Rev. D 82 (2010) 054024, https://10.1103/PhysRevD.82.054024. [arXiv:1003.4934 [hep-ph]].

T. N. Truong, Remarks on the unitarization methods, Phys. Rev. Lett. 67 (1991) 2260, https://10.1103/PhysRevLett.67.2260.

A. Gomez Nicola and J. R. Pelaez, Meson meson scattering within one loop chiral perturbation theory and its unitarization, Phys. Rev. D 65 (2002) 054009, https://10.1103/PhysRevD.65.054009. [arXiv:hep-ph/0109056 [hep-ph]].

O. V. Selyugin, J. R. Cudell and E. Predazzi, Analytic properties of different unitarization schemes, Eur. Phys. J. ST 162 (2008) 37, https://10.1140/epjst/e2008-00773-0. [arXiv:0712.0621 [hep-ph]].

J. R. Cudell, E. Predazzi and O. V. Selyugin, New analytic unitarisation schemes, Phys. Rev. D 79 (2009), 034033, https://10.1103/PhysRevD.79.034033. [arXiv:0812.0735 [hep-ph]].

J. Nebreda, J. R. Pelaez and G. Rios, Chiral extrapolation of pion-pion scattering phase shifts within standard and unitarized Chiral Perturbation Theory, Phys. Rev. D 83 (2011) 094011 https://10.1103/PhysRevD.83.094011. [arXiv:1101.2171 [hep-ph]].

R. L. Delgado, A. Dobado and F. J. Llanes-Estrada, Unitarity, analyticity, dispersion relations, and resonances in strongly interacting WLWL, ZLZL, and hh scattering, Phys. Rev. D 91 (2015) 075017 https://10.1103/PhysRevD.91.075017. [arXiv:1502.04841 [hep-ph]].

J. A. Oller, Unitarization Technics in Hadron Physics with Historical Remarks, Symmetry 12 (2020) 1114, https://10.3390/sym12071114. [arXiv:2005.14417 [hep-ph]].

A. Dobado and J. R. Pelaez, A Global fit of pi pi and pi K elastic scattering in ChPT with dispersion relations, Phys. Rev. D 47 (1993) 4883, https://10.1103/PhysRevD.47.4883. [arXiv:hep-ph/9301276 [hep-ph]].

J. A. Oller, E. Oset and J. R. Pelaez, Nonperturbative approach to effective chiral Lagrangians and meson interactions, Phys. Rev. Lett. 80 (1998) 3452, https://10.1103/PhysRevLett.80.3452. [arXiv:hep-ph/9803242 [hep-ph]].

M. F. M. Lutz et al., Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons, [arXiv:0903.3905 [hep-ex]].

A. Hamdi, Search for exotic states in photoproduction at GlueX, J. Phys. Conf. Ser. 1667 (2020) 012012, https://10.1088/1742-6596/1667/1/012012. [arXiv:1908.11786 [nucl-ex]].

T. Gutsche, S. Kuleshov, V. E. Lyubovitskij and I. T. Obukhovsky, Search for the glueball content of hadrons in γp interactions at GlueX, Phys. Rev. D 94 (2016) 034010, https://10.1103/PhysRevD.94.034010. [arXiv:1605.01035 [hep-ph]].

D. Ryabchikov, Meson spectroscopy at VES and COMPASS, EPJ Web Conf. 212 (2019) 03010, https://10.1051/epjconf/201921203010.

S. Marcello [BESIII], Hadron Physics from BESIII, JPS Conf. Proc. 10 (2016) 010009, https://10.7566/JPSCP.10.010009.

R. Aaij et al., Physics case for an LHCb Upgrade IIOpportunities in flavour physics, and beyond, in the HL-LHC era, [arXiv:1808.08865 [hep-ex]].

E. Kou et al., The Belle II Physics Book, PTEP 2019 (2019) 123C01, [erratum: PTEP 2020 (2020) 029201] https://10.1093/ptep/ptz106. [arXiv:1808.10567 [hep-ex]].

V. M. Abazov et al., Odderon Exchange from Elastic Scattering Differences between pp and pp¯ Data at 1.96 TeV and from pp Forward Scattering Measurements, Phys. Rev. Lett. 127 (2021) 062003, https://10.1103/PhysRevLett.127.062003. [arXiv:2012.03981 [hep-ex]].

T. Csoörgo, T. Novak, R. Pasechnik, A. Ster and I. Szanyi, Evidence of Odderon-exchange from scaling properties of elastic scattering at TeV energies, Eur. Phys. J. C 81 (2021) 180, https://10.1140/epjc/s10052-021-08867-6. [arXiv:1912.11968 [hep-ph]].

M. Broilo, D. A. Fagundes, E. G. S. Luna and M. Pelaez, Soft Pomeron in light of the LHC correlated data, Phys. Rev. D 103 (2021) 014019, https://10.1103/PhysRevD.103.014019. [arXiv:2012.08664 [hep-ph]].

A. Kirk and O. Villalobos Baillie, A Study of double pomeron exchange in ALICE, [arXiv:hep-ph/9811230 [hep-ph]].

M. Albrow, Hadron Spectroscopy in Double Pomeron Exchange Experiments, AIP Conf. Proc. 1819 (2017) no.1, 040008 https://10.1063/1.4977138. [arXiv:1701.09092 [hep-ex]].

S. Samanta and F. Giacosa, QFT treatment of a bound state in a thermal gas, Phys. Rev. D 102 (2020) 116023 https://10. 1103/PhysRevD.102.116023. [arXiv:2009.13547 [hepph]].

S. Samanta and F. Giacosa, Thermal role of bound states and resonances in scalar QFT, [arXiv:2110.14752 [hep-ph]].

Downloads

Published

2022-06-10

How to Cite

1.
Trotti E, Giacosa F. On the mass of the glueballonium. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 10 [cited 2022 Dec. 9];3(3):0308014 1-5. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6165