Systematic treatment of hypernuclear data and application to the hypertriton
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.0308069Keywords:
Hypernuclei, Hypertriton, Binding energies and masses, Lifetimes, Nuclear data compilationAbstract
A database is under construction to provide a complete collection of published basic properties of hypernuclei such as Λ binding energies, lifetimes, or excitation energies. From these values, averages with related errors are computed in a systematic way. For each property, the overall experimental situation is depicted in form of an ideogram showing the combined probability density function of the measurements. The database is accessible via a dynamic website at https://hypernuclei.kph.uni-mainz.de with an user interface offering customizable visualizations, selections, or unit conversions. The capabilities of the database are demonstrated for the puzzling and disputed data situation of the hypertriton.
References
PARTICLE DATA GROUP, P. Zyla et al., Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104.
R. Barlow, Asymmetric statistical errors, 2004, https://arxiv.org/abs/physics/0406120.
B. Taylor, Numerical Comparisons of Several Algorithms for Treating Inconsistent Data in a Least-Squares Adjustment of the Fundamental Constants. U.S. National Bureau of Standards NBSIR 81-2426, 1982, http://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir81-2426.pdf.
D. H. Davis, Hypernuclei – The early days, Nucl. Phys. A 547 (1992) 369, https://doi.org/10.1016/0375-9474(92)90746-7.
D. H. Davis, 50 years of hypernuclear physics – I. The early experiments, Nucl. Phys. A 754 (2005) 3c, https://doi.org/10.1016/j.nuclphysa.2005.01.002.
STAR Collaboration, L. Adamczyk et al., Measurement of the 3 ΛH lifetime in Au+Au collisions at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 97 (2018) 054909, https://doi.org/10.1103/PhysRevC.97.054909.
ALICE Collaboration, S. Acharya et al., 3 ΛH and 3 Λ¯H lifetime measurement in Pb–Pb collisions at √ sNN = 5.02 TeV via two-body decay, Phys. Lett. B 797 (2019) 134905, https://doi.org/10.1016/j.physletb.2019.134905 .
G. Bohm et al., On the lifetime of the 3 ΛH hypernucleus, Nucl. Phys. B 16 (1970) 46, https://doi.org/10.1016/0550-3213(70)90335-4.
G. Keyes, J. Sacton, J. Wickens and M. Block, A measurement of the lifetime of the 3 ΛH hypernucleus, Nucl. Phys. B 67 (1973) 269, https://doi.org/10.1016/0550-3213(73)90197-1.
STAR Collaboration, J. Adam et al., Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton, Nat. Phys. 16 (2020) 409, https://doi.org/10.1038/s41567-020-0799-7.
M. Jurić et al., A new determination of the bindingenergy values of the light hypernuclei (A ≤ 15), Nucl. Phys. B 52 (1973) 1, https://doi.org/10.1016/0550-3213(73)90084-9.
G. Bohm et al., A determination of the binding-energy values of light hypernuclei, Nucl. Phys. B 4 (1968) 511, https://doi.org/10.1016/0550-3213(68)90109-0.
ALICE Collaboration, P. Fecchio, “Studying hypertriton production, lifetime, and binding in different collision systems with ALICE.” Presented at the 19th International Conference on Strangeness in Quark Matter (SQM 2021), 2021, https://indi.to/3MvSH.
P. Achenbach, S. Bleser, J. Pochodzalla and M. Steinen, High-precision measurement of the hypertriton mass, PoS (Hadron2017) 207 (2018) 1, https://doi.org/10.22323/1.310.0207.
T. Gogami et al. Proposal C12-19-002 approved by JLab PAC49, 2021, https://www.jlab.org/physics/PAC.
Y. Ma et al. Proposal P73 approved by J-PARC PAC, 2018, https://j-parc.jp/researcher/Hadron/en/Proposal_e.html.
S. Nagao et al. Proposal #2895 approved by ELPH, 2018, https://www.lns.tohoku.ac.jp/en/users/.
F. Hildenbrand and H.-W. Hammer, Lifetime of the hypertriton, Phys. Rev. C 102 (2020) 064002, https://doi.org/10.1103/PhysRevC.102.064002.
A. Pérez-Obiol, D. Gazda, E. Friedman and A. Gal, Revisiting the hypertriton lifetime puzzle, Phys. Lett. B 811 (2020) 135916, https://doi.org/10.1016/j.physletb.2020.135916.
STAR Collaboration, M. Abdallah et al., Measurements of 3 ΛH and 4 ΛH lifetimes and yields in Au+Au collisions in the high baryon density region, https://arxiv.org/abs/2110.09513.
ALICE Collaboration, F. Mazzaschi, “Status of the hypertriton lifetime from ALICE.” Presented at the Joint THEIASTRONG2020 and JAEA/Mainz REIMEI Web-Seminar 2020/2021, 2020, https://indico.gsi.de/event/11174/.
ALICE Collaboration, S. Trogolo, Addressing the hypertriton lifetime puzzle with ALICE at the LHC, Nucl. Phys. A 982 (2019) 815, https://doi.org/10.1016/j.nuclphysa.2018.11.016.
ALICE Collaboration, J. Adam et al., 3 ΛH and 3 Λ¯H production in Pb–Pb collisions at √ sNN = 2.76 TeV, Phys. Lett. B 754 (2016) 360, https://doi.org/10.1016/j.physletb.2016.01.040.
HYPHI Collaboration, C. Rappold et al., Hypernuclear spectroscopy of products from 6 Li projectiles on a carbon target at 2 A GeV, Nucl. Phys. A 913 (2013) 170, https://doi.org/10.1016/j.nuclphysa.2013.05.019.
STAR Collaboration, B. I. Abelev et al., Observation of an antimatter hypernucleus, Science 328 (2010) 58, https://doi.org/10.1126/science.1183980.
S. A. Avramenko et al., A Study of the production and lifetime of the lightest relativistic hypernuclei, Nucl. Phys. A 547 (1992) 95, https://doi.org/10.1016/0375-9474(92)90714-U.
G. Keyes et al., Properties of ΛH 3 , Phys. Rev. D 1 (1970) 66, https://doi.org/10.1103/PhysRevD.1.66.
R. E. Phillips and J. Schneps, Lifetimes of light hyperfragments. II, Phys. Rev. 180 (1969) 1307, https://doi.org/10.1103/PhysRev.180.1307.
G. Keyes et al., New measurement of the ΛH 3 lifetime, Phys. Rev. Lett. 20 (1968) 819, https://doi.org/10.1103/PhysRevLett.20.819
Y. W. Kang, N. Kwak, J. Schneps and P. A. Smith, Lifetimes of light hyperfragments, Phys. Rev. 139 (1965) B401, https://doi.org/10.1103/PhysRev.139.B401.
R. J. Prem and P. H. Steinberg, Lifetimes of hypernuclei, ΛH 3 , ΛH 4 , ΛH 5 , Phys. Rev. 136 (1964) B1803, https://doi.org/10.1103/PhysRev.136.B1803.
L. Fortney, Lifetime measurements of ΛH 3 and ΛH 4 , in Proceedings of the International Conference on Hyperfragments, St. Cergue, Switzerland, 1963, pp. 85–88, 1964, https://doi.org/10.5170/CERN-1964-001.85.
M. M. Block et al., Hyperfragment studies in the helium bubble chamber, in Proceedings of the International Conference on Hyperfragments, St. Cergue, Switzerland, 1963 (1964) 63 https://doi.org/10.5170/CERN-1964-001.63.
K. N. Chaudhari et al., Binding energy and π + decay of light hyperfragments, Proc. Indian Acad. Sci. A 68 (1968) 228, https://www.ias.ac.in/article/fulltext/seca/068/05/0228-0243.
C. Mayeur et al., A determination of the BΛ values of light hypernuclei, Nuovo Cim. A 43 (1966) 180, https://doi.org/10.1007/BF02753195.
N. Crayton et al., Compilation of hyperfragment binding energies, Rev. Mod. Phys. 34 (1962) 186, https://doi.org/10.1103/RevModPhys.34.186
Y. Prakash, P. H. Steinberg, D. Chandler and R. J. Prem, On the binding energies of mesic hypernuclei, Nuovo Cim. series 21 (1961) 235, https://doi.org/10.1007/BF02832551.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Philipp Eckert, P. Achenbach, M. Aragonès Fontboté, T. Akiyama, M. O. Distler, A. Esser, J. Geratz, M. Hoek, K. Itabashi, M. Kaneta, R. Kino, P. Klag, H. Merkel, M. Mizuno, J. Müller, U. Müller, S. Nagao, S. N. Nakamura, Y. R. Nakamura, K. Okuyama, J. Pochodzalla, B. S. Schlimme, C. Sfienti, R. Spreckels, M. Steinen, K. Tachibana, M. Thiel, Y. Toyama, K. Uehara (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.