Charmonium radiative decays within the covariant confined quark model
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.0308016Keywords:
Charmed mesons, radiative transition, decay width, confinement, quark modelsAbstract
We have studied the dominant one-photon radiative transitions of the charmonium ground and orbitally excited states within an analytic confinement model. Along with two fixed basic model parameters (mc and the cutoff value λ), we introduced only one adjustable parameter common to charmonium states: ηc, J/ψ, χc0, χc1, hc and χc2 to parameterize the quark distribution inside the hadron. Our estimates are in good agreement with the latest data.
References
P. A. Zyla et al. (Particle Data Group), The review of particle physics (2021), Prog. Theor. Exp. Phys. 2020 (2020) 083C01.
M. Ablikim et al. (BESIII Collaboration), Observation of OZIsuppressed decays χcJ → ωφ, Phys. Rev. D 99 (2019) 012015; R. Aaij et al. (LHCb Collaboration), Model-independent confirmation of the Z(4430)− state, Phys. Rev. D 92 (2015) 112009.
P. Guo, T. Yepez-Martinez, and A. P. Szczepaniak, Charmonium meson and hybrid radiative transitions, Phys. Rev. D 89 (2014) 116005.
T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72 (2005) 054026.
G. Ganbold, Glueballs and mesons: The ground states, Phys. Rev. D 79 (2009) 034034.
G. Ganbold, QCD Effective Coupling in the Infrared Region, Phys. Rev. D 81 (2010) 094008.
G.V. Efimov and G. Ganbold, Meson spectrum and analytic confinement, Phys. Rev. D 65 (2002) 054012; G. Ganbold, Hadron spectrum and infrared-finite behavior of QCD running coupling, Phys. Part. Nuc. 43 (2012) 79; G. Ganbold, Quarkantiquark bound states and QCD running coupling within infrared confinement, Phys. Part. Nuc. 45 (2014) 10.
T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner ¨ and V. E. Lyubovitskij, Relativistic constituent quark model with infrared confinement, Phys. Rev. D 81 (2010) 034010; M.A. Ivanov, J.G. Korner and C.T. Tran, Analyzing new physics in the decays B¯0 → D (∗) τ −ν¯τ with form factors obtained from the covariant quark model, Phys. Rev. D 94 (2016) 094028.
G. Ganbold, T. Gutsche, M. A. Ivanov, and V. E. Lyubovitskij, Radiative transitions of charmonium states in the covariant confined quark model, Phys. Rev. D 104 (2021) 094048.
T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner ¨ and V. E. Lyubovitskij, Relativistic constituent quark model with infrared confinement, Phys. Rev. D 81 (2010) 034010; T. Gutsche et al., Theoretical description of the decays Λb → Λ (∗) ( 1 2 ± , 3 2 ± ) + J/ψ, Phys. Rev. D 96 (2017) 013003.
T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and ¨ P. Santorelli, Rare baryon decays Λb → Λl +l −(l = e, µ, τ ) and Λb → Λγ : differential and total rates, lepton- and hadronside forward-backward asymmetries, Phys. Rev. D 87 (2013) 074031.
G. Ganbold, T. Gutsche, M. A. Ivanov, and V. E. Lyubovitskij, On the meson mass spectrum in the covariant confined quark model, J. Phys. G 42 (2015) 075002.
T. Gutsche et al., Analyzing lepton flavor universality in the decays Λb → Λ (∗) c ( 1 2 ± , 3 2 − ) + ` ν¯` , Phys. Rev. D 98 (2018) 053003.
T. Gutsche et al., Semileptonic decay Λb → Λc + τ − + ¯ντ in the covariant confined quark model, Phys. Rev. D 91 (2015) 074001.
R. Aaij et al. (LHCb Collaboration), Measurement of the cross-section ratio σ(χc2)/σ(χc1) for prompt χc production at √ s = 7 TeV, Phys. Lett. B 714 (2012) 215.
R. Aaij et al. (LHCb Collaboration), Measurement of the relative rate of prompt χc0, χc1 and χc2 production at √ s = 7 TeV, JHEP 10 (2013) 115.
R. Aaij et al. (LHCb Collaboration), Study of charmonium production in b-hadron decays and first evidence for the decay B 0 s → φφφ, Eur. Phys. J. C 77 (2017) 609.
D. Becirevic and F. Sanfilippo, Lattice QCD study of the radiative decays J/ψ → ηcγ and hc → ηcγ, JHEP 1301 (2013) 028.
H. W. Ke, X. Q. Li, and Y. L. Shi, The radiative decays of 0 ++ and 1 +− heavy mesons, Phys. Rev. D 87 (2013) 054022.
R. Bruschini and P. Gonzalez, ´ Radiative decays in bottomonium beyond the long wavelength approximation, Phys. Rev. D 101 (2020) 014027.
E. Eichten, S. Godfrey, H. Mahlke, and J. L. Rosner, Quarkonia and their transitions, Rev. Mod. Phys. 80 (2008) 1161.
M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61 (2008) 455.
J. J. Dudek, R. G. Edwards, and D. G. Richards, Radiative transitions in charmonium from lattice QCD, Phys. Rev. D 73 (2006) 074507.
Y. Chen et al., Radiative transitions in charmonium from Nf = 2 twisted mass lattice QCD, Phys. Rev. D 84 (2011) 034503.
Stanislav Dubnicka et al., One-photon decay of the tetraquark state X(3872) → γ + J/ψ in a relativistic constituent quark model with infrared confinement, Phys. Rev. D 84 (2011) 014006.
Wei-Jun Deng, Li-Ye Xiao, Long-Cheng Gui, and XianHui Zhong, Radiative transitions of charmonium states in a constituent quark model, Phys. Rev. D 95 (2017) 034026.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Gurjav Ganbold (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.