Towards precise collider predictions: the Parton Branching method

Authors

  • Aleksandra Lelek University of Antwerp

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308102

Keywords:

Transverse Momentum Dependent (TMD) PDFs, resummation, Parton Shower, matching, NLO, Drell-Yan, Drell-Yan jets, merging

Abstract

The collinear factorization theorem, combined with finite-order calculations in perturbative QCD, provides a powerful framework to obtain predictions for many collider observables. However, for observables which involve multiple energy scales, transverse degrees of freedom cannot be neglected, and finite-order perturbative calculations have to be combined with resummed calculations to all orders in the QCD running coupling in order to obtain reliable theoretical predictions, capable of describing experimental measurements. This is traditionally done either by analytic resummation methods or by parton shower (PS) Monte Carlo (MC) methods. In this talk we present the Parton Branching (PB) MC method to obtain QCD collider predictions based on Transverse Momentum Dependent (TMD) factorization. The PB provides evolution equations for TMD Parton Distribution Functions (PDFs) which, upon fitting TMD PDFs to experimental data, can be used in TMD MC event generators. We present the basic concepts of the method and illustrate its applications to collider measurements focusing on Drell-Yan (DY) lepton-pair production in different kinematic ranges, from fixed-target to LHC energies. We discuss the latest developments of the method concentrating especially on the matching of next-to-leading-order (NLO) TMD evolution with MC-at-NLO calculations of NLO matrix elements.

References

J. C. Collins, D. E. Soper, G. F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1, https://doi.org/10.1142/9789814503266-0001.

R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects, Acta Phys. Polon. B 46 (2015) 2501, https://doi.org/10.5506/APhysPolB.46.2501.

J. C. Collins, D. E. Soper, G. F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199, https://doi.org/10.1016/0550-3213(85)90479-1.

S. Catani, M. Ciafaloni, F. Hautmann, GLUON CONTRIBUTIONS TO SMALL x HEAVY FLAVOR PRODUCTION, Phys. Lett. B 242 (1990) 97, https://doi.org/10.1016/0370-2693(90)91601-7.

S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys. B 366 (1991) 135, https://doi.org/10.1016/0550-3213(91)90055-3.

F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik, Soft-gluon resolution scale in QCD evolution equations, Phys. Lett. B 772 (2017) 446, https://doi.org/10.1016/j.physletb.2017.07.005.

F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik, Collinear and TMD Quark and Gluon Densities from Parton Branching Solution of QCD Evolution Equations, JHEP 1801 (2018) 070, https://doi.org/10.1007/JHEP01(2018)070.

A. Bermudez Martinez, P. Connor, H. Jung, A. Lelek, R. Žlebčık, F. Hautmann and V. Radescu, Collinear and TMD parton densities from fits to precision DIS measurements in the parton branching method, Phys. Rev. D 99 (2019) 074008, https://doi.org/10.1103/PhysRevD.99.074008.

M. Deak, A. van Hameren, H. Jung, A. Kusina, K. Kutak and M. Serino, Calculation of the Z+jet cross section including transverse momenta of initial partons, Phys. Rev. D 99 (2019) 094011, https://doi.org/10.1103/PhysRevD.99.094011.

E. Blanco, A. van Hameren, H. Jung, A. Kusina and K. Kutak, Z boson production in proton-lead collisions at the LHC accounting for transverse momenta of initial partons, Phys. Rev. D 100 (2019) 054023, https://doi.org/10.1103/PhysRevD.100.054023.

H. Van Haevermaet, A. Van Hameren, P. Kotko, K. Kutak and P. Van Mechelen, Trijets in kT-factorisation: matrix elements vs parton shower, Eur. Phys. J. C 80 (2020) 610, https://doi.org/10.1140/epjc/s10052-020-8193-2.

F. Hautmann, L. Keersmaekers, A. Lelek, A. M. Van Kampen, Dynamical resolution scale in transverse momentum distributions at the LHC, Nucl. Phys. B 949 (2019) 114795, https://doi.org/10.1016/j.nuclphysb.2019.114795.

A. Bermudez Martinez et al., Production of Z-bosons in the parton branching method, Phys. Rev. D 100 (2019) 074027, https://doi.org/10.1103/PhysRevD.100.074027.

A. Bermudez Martinez et al., The transverse momentum spectrum of low mass Drell–Yan production at next-toleading order in the parton branching method, Eur. Phys. J. C 80 (2020) 598, https://doi.org/10.1140/epjc/s10052-020-8136-y.

H. Jung, S. T. Monfared and T. Wening, Photon TMD.

S. Taheri Monfared, H. Jung and F. Hautmann, Description of Z + b ¯b with 4 flavour and 5 flavour transverse momentum dependent PDFs, PoS ICHEP2020 (2021) 511, https://doi.org/10.22323/1.390.0511.

L. Keersmaekers and S. T. Monfared, Recent developments in the Parton Branching approach to TMDs,

L. Keersmaekers, Implementing Transverse Momentum Dependent splitting functions in Parton Branching evolution equations.

A. B. Martinez, F. Hautmann and M. L. Mangano, TMD evolution and multi-jet merging, Phys. Lett. B 822 (2021) 136700, https://doi.org/10.1016/j.physletb.2021.136700.

M. I. Abdulhamid et al., Azimuthal correlations of high transverse momentum jets at next-to-leading order in the parton branching method.

A. Bacchetta, G. Bozzi, M. Lambertsen, F. Piacenza, J. Steiglechner, W. Vogelsang, Difficulties in the description of DrellYan processes at moderate invariant mass and high transverse momentum, Phys. Rev. D 100 (2019) 014018, https://doi.org/10.1103/PhysRevD.100.014018.

G. Marchesini, B. R. Webber, Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation, Nucl. Phys. B 310 (1988) 461 https://doi.org/10.1016/0550-3213(88)90089-2.

V. N. Gribov, L. N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438, [Yad. Fiz. 15 (1972) 781]

L. N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys. 20 (1975) 94, [Yad. Fiz. 20 (1974) 181]

G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298, https://doi.org/10.1016/0550-3213(77)90384-4.

Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641, [Zh. Eksp. Teor. Fiz. 73 (1977) 1216]

H. Abramowicz et al. [H1 and ZEUS], Combination of measurements of inclusive deep inelastic e ±p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580, https://doi.org/10.1140/epjc/s10052-015-3710-4.

S. Alekhin et al., HERAFitter, Eur. Phys. J. C 75 (2015) 304, https://doi.org/10.1140/epjc/s10052-015-3480-z.

N. A. Abdulov et al. TMDlib2 and TMDplotter: a platform for 3D hadron structure studies, Eur. Phys. J. C 81 (2021) 752, https://doi.org/10.1140/epjc/s10052-021-09508-8.

H. Jung et al., The CCFM Monte Carlo generator CASCADE version 2.2.03, Eur. Phys. J. C 70 (2010) 1237, https://doi.org/10.1140/epjc/s10052-010-1507-z.

S. Baranov et al., CASCADE3 A Monte Carlo event generator based on TMDs, Eur. Phys. J. C 81 (2021) 425, https://doi.org/10.1140/epjc/s10052-021-09203-8.

A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132, https://doi.org/10.1140/epjc/s10052-015-3318-8.

J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, https://doi.org/10.1007/JHEP07(2014)079.

J. Alwall et al. A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300, https://doi.org/10.1016/j.cpc.2006.11.010.

S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029, https://doi.org/10.1088/1126-6708/2002/06/029.

G. Corcella et al., HERWIG 6.5 release note.

J. C. Webb, Measurement of continuum dimuon production in 800-GeV/C proton nucleon collisions, https://doi.org/10.2172/1155678.

D. Antreasyan et al., Dimuon Scaling Comparison at 44-GeV and 62-GeV, Phys. Rev. Lett. 48 (1982) 302, https://doi.org/10.1103/PhysRevLett.48.302.

C. Aidala et al. [PHENIX], Measurements of µµ pairs from open heavy flavor and Drell-Yan in p+p collisions at √ s = 200 GeV, Phys. Rev. D 99 (2019) 072003, https://doi.org/10.1103/PhysRevD.99.072003.

G. Aad et al. [ATLAS], Measurement of the transverse momentum and φ ∗ η distributions of Drell–Yan lepton pairs in proton–proton collisions at √ s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291, https://doi.org/10. 1140/epjc/s10052-016-4070-4.

A. M. Sirunyan et al. [CMS], Measurements of differential Z boson production cross sections in proton-proton collisions at √ s = 13 TeV, JHEP 12 (2019) 061, https://doi.org/10.1007/JHEP12(2019)061.

G. Aad et al. [ATLAS], Measurement of the transverse momentum and φ ∗ η distributions of Drell-Yan lepton pairs in protonproton collisions at √ s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291, https://doi.org/10.1140/epjc/s10052-016-4070-4.

M. L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013, https://doi.org/10.1088/1126-6708/2007/01/013.

J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473, https://doi.org/10.1140/epjc/s10052-007-0490-5.

M. Aaboud et al. [ATLAS], Measurements of the production cross section of a Z boson in association with jets in pp collisions at √ s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 361, https://doi.org/10.1140/epjc/s10052-017-4900-z.

Downloads

Published

2022-06-14

How to Cite

1.
Lelek A. Towards precise collider predictions: the Parton Branching method. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 14 [cited 2022 Dec. 7];3(3):03080102 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6261