Quarkonium suppression in the open quantum system approach

Authors

  • Xiaojun Yao Massachusetts Institute of Technology

DOI:

https://doi.org/10.31349/SuplRevMexFis.3.0308127

Keywords:

Quarkonium, quark-gluon plasma

Abstract

Quarkonium suppression in relativistic heavy ion collisions has been studied experimentally for decades to probe the properties of the quark-gluon plasma. For this purpose, complete theoretical understanding of the time evolution of quarkonium inside the quark-gluon plasma is needed but challenging. Here I review recent progress in applying the open quantum system framework to describe the real-time dynamics of quarkonium, with a focus on the chromoelectric field correlators of the plasma that control the dynamics.

References

T. Matsui and H. Satz, J/ψ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B 178 (1986) 416. https://doi.org/10.1016/0370-2693(86)91404-8.

A. Rothkopf, Heavy Quarkonium in Extreme Conditions, Phys. Rept. 858 (2020) 1, https://doi.org/10.1016/j.physrep.2020.02.006. [arXiv:1912.02253 [hep-ph]].

E. Chapon, et al., Prospects for quarkonium studies at the high-luminosity LHC, Prog. Part. Nucl. Phys. 122 (2022) 103906, https://doi.org/10.1016/j.ppnp.2021.103906. [arXiv:2012.14161 [hep-ph]].

B. Müller, Diagnosing the Quark-Gluon Plasma, [arXiv:2106.11923 [nucl-th]].

B. Chen and J. Zhao, Bottomonium Continuous Production from Unequilibrium Bottom Quarks in Ultrarelativistic Heavy Ion Collisions, Phys. Lett. B 772 (2017) 819, https://doi.org/10.1016/j.physletb.2017.07.054. [arXiv:1704.05622 [nucl-th]].

X. Du, R. Rapp and M. He, Color Screening and Regeneration of Bottomonia in High-Energy Heavy-Ion Collisions, Phys. Rev. C 96 (2017) 054901, https://doi.org/10.1103/PhysRevC.96.054901. [arXiv:1706.08670 [hep-ph]].

X. Yao and B. Müller, Approach to equilibrium of quarkonium in quark-gluon plasma, Phys. Rev. C 97 (2018) 014908, [erratum: Phys. Rev. C 97 (2018) 049903,] https://doi.org/10.1103/PhysRevC.97.014908. [arXiv:1709.03529 [hep-ph]].

X. Yao and B. Müller, Doubly charmed baryon production in heavy ion collisions, Phys. Rev. D 97 (2018) 074003, https://doi.org/10.1103/PhysRevD.97.074003. [arXiv:1801.02652 [hep-ph]].

X. Yao and B. Müller, Quarkonium inside the quark-gluon plasma: Diffusion, dissociation, recombination, and energy loss, Phys. Rev. D 100 (2019) 014008, https://doi.org/10.1103/PhysRevD.100.014008. [arXiv:1811.09644 [hep-ph]].

X. Yao, W. Ke, Y. Xu, S. A. Bass and B. Müller, Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma, JHEP 01 (2021) 046, https://doi.org/10.1007/JHEP01(2021)046. [arXiv:2004.06746 [hep-ph]].

J. Zhao, B. Chen and P. Zhuang, Charmonium Triangular Flow in High Energy Nuclear Collisions, [arXiv:2112.00293 [hepph]].

Y. Akamatsu, Heavy quark master equations in the Lindblad form at high temperatures, Phys. Rev. D 91, no.5, 056002 (2015) https://doi.org/10.1103/PhysRevD.91.056002. [arXiv:1403.5783 [hep-ph]].

R. Katz and P. B. Gossiaux, The Schrödinger–Langevin equation with and without thermal fluctuations, Annals Phys. 368 (2016) 267, https://doi.org/10.1016/j.aop.2016.02.005. [arXiv:1504.08087 [quant-ph]].

N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, Quarkonium suppression in heavy-ion collisions: an open quantum system approach, Phys. Rev. D 96 (2017) 034021, https://doi.org/10.1103/PhysRevD.96.034021. [arXiv:1612.07248 [hep-ph]].

N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, Heavy quarkonium suppression in a fireball, Phys. Rev. D 97 (2018) 074009, https://doi.org/10.1103/PhysRevD.97.074009. [arXiv:1711.04515 [hep-ph]].

S. Kajimoto, Y. Akamatsu, M. Asakawa and A. Rothkopf, Dynamical dissociation of quarkonia by wave function decoherence, Phys. Rev. D 97 (2018) 014003, https://doi.org/10.1103/PhysRevD.97.014003. [arXiv:1705.03365 [nucl-th]].

J. P. Blaizot and M. A. Escobedo, Quantum and classical dynamics of heavy quarks in a quark-gluon plasma, JHEP 06 (2018) 034, https://doi.org/10.1007/JHEP06(2018)034. [arXiv:1711.10812 [hep-ph]].

J. P. Blaizot and M. A. Escobedo, Approach to equilibrium of a quarkonium in a quark-gluon plasma, Phys. Rev. D 98 (2018) 074007, https://doi.org/10.1103/PhysRevD.98.074007. [arXiv:1803.07996 [hep-ph]].

X. Yao and T. Mehen, Quarkonium in-medium transport equation derived from first principles, Phys. Rev. D 99 (2019) 096028, https://doi.org/10.1103/PhysRevD.99.096028. [arXiv:1811.07027 [hep-ph]].

T. Miura, Y. Akamatsu, M. Asakawa and A. Rothkopf, Quantum Brownian motion of a heavy quark pair in the quarkgluon plasma, Phys. Rev. D 101 (2020) 034011, https://doi.org/10.1103/PhysRevD.101.034011. [arXiv:1908.06293 [nucl-th]].

X. Yao and T. Mehen, Quarkonium Semiclassical Transport in Quark-Gluon Plasma: Factorization and Quantum Correction, JHEP 02 (2021) 062, https://doi.org/10.1007/JHEP02(2021)062. [arXiv:2009.02408 [hep-ph]].

N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend and J. H. Weber, Bottomonium suppression in an open quantum system using the quantum trajectories method, JHEP 05 (2021) 136, https://doi.org/10.1007/JHEP05(2021)136. [arXiv:2012.01240 [hep-ph]].

N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend and J. H. Weber, Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy, Phys. Rev. D 104 (2021) 094049, https://doi.org/10.1103/PhysRevD.104.094049. [arXiv:2107.06222 [hep-ph]].

Y. Akamatsu, Quarkonium in Quark-Gluon Plasma: Open Quantum System Approaches Re-examined, [arXiv:2009.10559 [nucl-th]].

X. Yao, Open quantum systems for quarkonia, Int. J. Mod. Phys. A 36 (2021) 2130010, https://doi.org/10.1142/S0217751X21300106. [arXiv:2102.01736 [hepph]].

T. Binder, K. Mukaida, B. Scheihing-Hitschfeld and X. Yao, Non-Abelian Electric Field Correlator at NLO for Dark Matter Relic Abundance and Quarkonium Transport, [arXiv:2107.03945 [hep-ph]].

J. P. Blaizot and M. A. Escobedo, Phenomenological study of quarkonium suppression and the impact of the energy gap between singlets and octets, Phys. Rev. D 104 (2021) 054034, https://doi.org/10.1103/PhysRevD.104.054034. [arXiv:2106.15371 [hep-ph]].

J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N=4 Yang-Mills, Phys. Rev. D 74 (2006) 085012, https://doi.org/10.1103/PhysRevD.74.085012. [arXiv:hep-ph/0605199 [hep-ph]].

Y. Burnier, M. Laine, J. Langelage and L. Mether, Colour-electric spectral function at next-to-leading order, JHEP 08 (2010) 094, https://doi.org/10.1007/JHEP08(2010)094. [arXiv:1006.0867 [hep-ph]].

A. M. Eller, J. Ghiglieri and G. D. Moore, Thermal Heavy Quark Self-Energy from Euclidean Correlators, Phys. Rev. D 99 (2019) 094042, [erratum: Phys. Rev. D 102, no.3, 039901 (2020)] https://doi.org/10.1103/PhysRevD.99.094042. [arXiv:1903.08064 [hep-ph]].

V. Vaidya and X. Yao, Transverse momentum broadening of a jet in quark-gluon plasma: an open quantum system EFT, JHEP 10 (2020) 024, https://doi.org/10.1007/JHEP10(2020)024. [arXiv:2004.11403 [hep-ph]].

V. Vaidya, Effective Field Theory for jet substructure in heavy ion collisions, JHEP 11 (2021) 064, https://doi.org/10.1007/JHEP11(2021)064. [arXiv:2010.00028 [hepph]].

V. Vaidya, Radiative corrections for factorized jet observables in heavy ion collisions, [arXiv:2107.00029 [hep-ph]].

W. A. De Jong, M. Metcalf, J. Mulligan, M. Płoskon, F. Ringer and X. Yao, Quantum simulation of open quantum systems in heavy-ion collisions, Phys. Rev. D 104 (2021) 051501, https://doi.org/10.1103/PhysRevD.104.L051501. [arXiv:2010.03571 [hep-ph]].

W. A. de Jong, K. Lee, J. Mulligan, M. Płoskon, F. Ringer and X. Yao, Quantum simulation of non-equilibrium dynamics and thermalization in the Schwinger model, [arXiv:2106.08394 [quant-ph]].

Downloads

Published

2022-06-08

How to Cite

1.
Yao X. Quarkonium suppression in the open quantum system approach. Supl. Rev. Mex. Fis. [Internet]. 2022 Jun. 8 [cited 2022 Dec. 7];3(3):0308127 1-4. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6283