GEANT4 dose estimations of solar protons: Al and PMMA-Bi2O3 shielding for space exploration

Authors

  • J. A. Mireles
  • J. A. Lopez
  • L. Sajo-Bohus
  • Miguel Castro-Colin Bruker AXS GmbH

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.011003

Keywords:

Radiation, Cosmic Radiation, Spectrometry, Shielding Materials, Space Exploration, Monte Carlo Simulations

Abstract

Adverse effects of long-term exposure to galactic cosmic radiation (GCR) pose a clear obstacle to future space exploration programs. In addition to GCR we have solar particle radiation. We simulated the latter using a scaled fluence profile of solar protons taken from a literature study that comprises about three solar cycles. The model is a three-layer stack that includes shielding material and muscular tissue. Our simulation strategy uses protons as precursor radiation of neutrons. Subsequently, the shield is adjusted for thickness, dictated by an average depth at which neutrons are created through various processes during the simulation. Neutrons are then energy-binned and a corresponding neutron flux is simulated. Particles generated during the second phase of the simulation, i.e. by neutrons, are then counted toward absorbed dose within the muscular tissue layer. Clearly, the dynamics of the process is not captured by the simulation, nevertheless an overview of neutron yield can be estimated and the absorbed dose. The objective is to provide some insight about the effect of the new composite shield, PMMA-Bi2O3, that has an intrinsic capability for gamma dose reduction, compared to a more traditional aluminum shield.

References

R. Francis et al., AEGIS Autonomous Targeting for ChemCam on Mars Science Laboratory: Deployment and Results of Initial Science Team Use, Sci. Robot. 2 (2017) 1, https://doi.org/10.1126/scirobotics.aan4582

K. W. Lewis et al., A Surface Traverse on Mars Indicates Low Bedrockdensity at Gale Crater, Science 363 (2019) 535, https://doi.org/10.1126/science.aat0738

P. E. Rosen, D. Zhang, J. H. Jiang, L. V. Ijzendoorn, K. A. Fahy, and Z.-H. Zhu, Impact of Economic Constraints on the Projected Timeframe for Human-Crewed Deep Space Exploration, Galaxies 10 (2022) 1, https://doi.org/10.3390/galaxies10040088

M. Weinzierl and M. Sarang, The Commercial Space Age Is Here, Harv. Bus. Rev. (2021). https://hbr.org/2021/02/the-commercial-space-age-is-here

A. J. Taylor, J. C. McDowell, and M. Elvis, Phobos and Mars Orbit as a Base for Asteroid Exploration and Mining, Planet. Space Sci. 214 (2022) 105450, https://doi.org/10.1016/j.pss.2022.105450

H. G. Changela et al., Mars: New Insights and Unresolved Questions, Int. J. Astrobiol. 20 (2021) 394, https:/doi.org/10.1017/S1473550421000276

J. W. Wilson, F. A. Cucinotta, J. L. Shinn, M.-H. Kim, and F. F. Badavi, Preliminary Considerations, in Shielding Strategies for Human Space Exploration (Houston, TX, U.S.A., 1997). 8. S. Thoudam, J. P. Rachen, A. van Vliet, A. Achterberg, S. Buitink, H. Falcke, and J. R. Hörandel, Cosmic-Ray Energy Spectrum and Composition up to the Ankle - the Case for a Second Galactic Component, Astron. Astrophys. 595 (2016) A33, https://doi.org/10.1051/0004-6361/201628894

M. A. Xapsos, J. L. Barth, E. G. Stassinopoulos, S. Messenger, G. P. Summers, and E. A. Burke, Characterizing Solar Proton Energy Spectra for Radiation Effects Applications, Nucl. Sci. IEEE Trans. On 47 (2001) 2218, https://doi.org/10.1109/23.903756

L. Miroshnichenko, Retrospective Analysis of GLEs and Estimates of Radiation Risks, J. Space Weather Space Clim. 8 (2018) A52. https://doi.org/10.1051/swsc/2018042

T. Berger et al., DOSIS & DOSIS 3D: Long-Term Dose Monitoring Onboard the Columbus Laboratory of the International Space Station (ISS), J. Space Weather Space Clim. 6 (2016) A39. https://doi.org/10.1051/swsc/2016034

L. E. Wahl, Environmental Radiation Fact Sheet 2010, No. Fact Sheet: January 2010, Health Physics Society, 2010. https://hps.org/documents/environmental.radiation.fact.sheet.pdf

J. K. Pàlfalvi, Y. Akatov, J. Szabó, L. Sajo-Bohus, and I. Eördogh, Detection of Primary and Secondary Cosmic Ray Particles Aboard the ISS Using SSNTD Stacks, Radiat. Prot. Dosimetry 120 (2006) 427, https://doi.org/10.1093/rpd/nci673

J. T. Wilson, D. J. Lawrence, P. N. Peplowski, V. R. Ecke, and J. A. Kegerreis, Space-Based Measurement of the Neutron Lifetime Using Data from the Neutron Spectrometer on NASA’s MESSENGER Mission, Phys. Rev. Res. 2 (2020) 023316, https://doi.org/10.1103/PhysRevResearch.2.023316

L. Sajo-Bohus, J. A. López, and M. Castro-Colin, Simulation of Dose Estimations from Solar Protons: A PMMA-Bi2O3 Shielding Model for Space Exploration, J. Nucl. Phys. Mater. Sci. Radiat. Appl. 8 (2021) 155, https://doi.org/10.15415/jnp.2021.82020

D. Cao, G. Yang, M. Bourham, and D. Moneghan, Gamma Radiation Shielding Properties of Poly (Methyl Methacrylate) / Bi2O3 Composites, Nucl. Eng. Technol. 52 (2020) 2613, https://doi.org/10.1016/j.net.2020.04.026

S. A. M. Issa, M. Ahmad, H. O. Tekin, Y. B. Sadeek, and M. I. Sayyed, Effect of Bi2O3 Content on Mechanical and Nuclear Radiation Shielding Properties of Bi2O3-MoO3-B2O3- SiO2-Na2O-Fe2O3 Glass System, Results Phys. 13 (2019) 102165, https://doi.org/10.1016/j.rinp.2019.102165

S. Agostinelli et al., Geant4-a Simulation Toolkit, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 506 (2003) 250, https://doi.org/10. 1016/S0168-9002(03)01368-8

E. Bagli, M. Asai, A. Dotti, L. Pandola, and M. Verderi, Allowing for Crystalline Structure Effects in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 402 (2017) 304. https://doi.org/10.1016/j.nimb.2017.03.092

D. P. Doane, Aesthetic Frequency Classifications, Am. Stat. 30 (1976) 181

D. H. Wright and M. H. Kelsey, The GEANT4 Bertini Cascade, Nucl. Instrum. Methods Phys. Res. A 804 (2015) 175, https://doi.org/10.1016/j.nima.2015.09.058

R. G. Fasil’kov, N. S. Mysin, and Y. M. Chirkin, Neutron Yield from a Massive Lead Target under the Action of Relativistic Light Ions, At. Energy 79 (1995) 664, https://doi.org/10.1007/BF02415388

C. M. Lavelle et al., Neutronic Design and Measured Performance of the Low Energy Neutron Source (LENS) Target Moderator Reflector Assembly, Arxiv arXiv:0803.4170, (2008). https://arxiv.org/abs/0803.4170

R. R. Fullwood, J. D. Cramer, R. A. Haarman, R. P. Forrest Jr., and R. G. Schrandt, Neutron Production by Medium-Energy Protons on Heavy Metal Targets, No. LA-4789, Los Alamos Sci. Lab., 1972.

T. W. Jeong et al., CR-39 Track Detector for Multi-MeV Ion Spectroscopy, Sci. Rep. 7 (2017) 1. https://doi.org/10.1038/s41598-017-02331-w.

Downloads

Published

2023-03-08

How to Cite

1.
Mireles JA, Lopez JA, Sajo-Bohus L, Castro-Colin M. GEANT4 dose estimations of solar protons: Al and PMMA-Bi2O3 shielding for space exploration. Supl. Rev. Mex. Fis. [Internet]. 2023 Mar. 8 [cited 2024 Jun. 14];4(1):011003 1-6. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6725