Numerical modeling of radiation-induced reactions: Fricke dosimeter at 298 K, 198 K, and 77 K

Authors

  • Alejandro Paredes Arriaga Posgrado en Ciencias de la Tierra - UNAM
  • A.L. Rivera Centro de Ciencias de la Complejidad - UNAM
  • D. Frías Universidade do Estado da Bahia, Salvador-BA., Brazil
  • S. Ramos Instituto de Ciencias Nucleares - UNAM
  • A. Negrón Mendoza Instituto de Ciencias Nucleares - UNAM

DOI:

https://doi.org/10.31349/SuplRevMexFis.4.011001

Keywords:

Fricke dosimeter, radiation, mathematical model, temperature

Abstract

The Fricke dosimeter is a widely used gamma radiation dosimetry system. The system is based on the detection of Fe2+ to Fe3+ oxidation in an aqueous solution of ferrous sulfate in sulfuric acid, exposed to ionizing radiation in the presence of oxygen. The system is formed by a series of highly dependent chemical reactions. We developed a numerical model of coupled differential equations based on the mass balance; each equation incorporates information about the formation and breakdown of each molecule, as well as a term that represents an external source of radiation. The numerical model can reproduce the behavior of the experimental data at room temperature. We proposed a correction factor to simulate the behavior of the dosimeter at temperatures of 198 K and 77 K, respectively, when the system is in a thermal bath of dry ice or liquid nitrogen. This model could support a variety of experimental challenges for radiation at low temperatures in different fields of industry and could have relevance for astrobiology problems by offering the possibility of simulating reactions in comets and other exoplanetary bodies.

References

P. Andreo, D.T. Burns, A.E. Nahum, and J. Seuntjens, Fundamentals of Ionizing Radiation Dosimetry: Solutions to Exercises; Wiley-VCH: Weinheim, 2017; ISBN 978-3-527-34352- 2.

K.H. Lieser, Nuclear and Radiochemistry: Fundamentals and Applications; 2nd, rev. ed.; Wiley-VCH: Berlin; New York, 2001; ISBN 978-3-527-30317-5.

I.G. Draganic, Z.D. Draganic, and J.P. Adloff, Radiation and Radioactivity on Earth and Beyond; 2nd ed.; CRC Press: Boca Raton, 1993; ISBN 978-0-8493-8675-6.

L.R. Dartnell, Ionizing Radiation and Life. Astrobiology 11 (2011) 551, https://doi.org/10.1089/ast.2010.0528

A.M. Shaw, Astrochemistry: From Astronomy to Astrobiology; John Wiley & Sons: Chichester, England; Hoboken, NJ, 2006; ISBN 978-0-470-09136-4.

H.G.M. Hill and J.A. Nuth, The Catalytic Potential of Cosmic Dust: Implications for Prebiotic Chemistry in the Solar Nebula and Other Protoplanetary Systems. Astrobiology 3 (2003) 291, https://doi.org/10.1089/153110703769016389

ISO/ASTM 51261:2013 Practice for Calibration of Routine Dosimetry Systems for Radiation Processing 2013.

B.L. Gupta, R.M. Bhat, G.R. Narayan, and S.R. Nilekani, Chemical Dosimetry Techniques for Various Applications under Different Geometries. Radiat. Phys. Chem. 59 (2000) 81, https://doi.org/10.1016/S0969-806X(00)00187-0

J.W.T. Spinks and R.J. Woods, An Introduction to Radiation Chemistry; 3rd ed.; Wiley: New York, 1990; ISBN 978-0-471- 61403-6.

A. Kuppermann and G.G. Belford, Diffusion Kinetics in Radiation Chemistry. I. Generalized Formulation and Criticism of Diffusion Model. J. Chem. Phys. 36 (1962) 1412, https://doi.org/10.1063/1.1732759

A. Negron-Mendoza, S. Ramos, and D. Frias-Suarez, On the Numerical Simulation of Reactions Induced by Radiation. In Proceedings of the 2012 Computing, Communications and Applications Conference; IEEE: Hong Kong, China, January 2012; pp. 365-369.

A.L. Rivera, A.S. Ramos-Bernal, and A. Negron-Mendoza, Agent-Based Model of Oxidation Reactions of Ferrous Ions. J. Nucl. Phys. Mater. Sci. Radiat. Appl. 4 (2016) 149, https://doi.org/10.15415/jnp.2016.41015

G. Sanchez-Mejorada, D. Frias, A. Negron-Mendoza, and S. A Ramos-Bernal, Comparison between Experimental Results and a Mathematical Model of the Oxidation Reactions Induced by Radiation of Ferrous Ions. Radiat. Meas. 43 (2008) 287, https://doi.org/10.1016/j.radmeas.2007.11.038

A. Ramos, S. Ramos-Bernal, D. Frias, F.G. Mosqueira, and A. Negron-Mendoza, Frozen Solutions of Fricke Dosimeter. J. Nucl. Sci. Technol. 45 (2008) 290, https://doi.org/10.1080/00223131.2008.10875845

SciPy community, T. Scipy.Integrate.Solve ivp- SciPy v1.7.1 Reference Guide Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve.ivp.html

H. Mehrer, Diffusion in Solids; Springer Series in SolidState Sciences; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; Vol. 155; ISBN 978-3-540-71486-6.

A. Roa, Metalografıa y Procesos Termicos 2010.

Downloads

Published

2023-03-08

How to Cite

1.
Paredes Arriaga A, Rivera AL, Frías D, Ramos S, Negrón Mendoza A. Numerical modeling of radiation-induced reactions: Fricke dosimeter at 298 K, 198 K, and 77 K. Supl. Rev. Mex. Fis. [Internet]. 2023 Mar. 8 [cited 2024 Dec. 8];4(1):011001 1-4. Available from: https://rmf.smf.mx/ojs/index.php/rmf-s/article/view/6760