The entropy of systems

Authors

  • J. L. Manriquez-Zepeda UAEMex
  • J. Rueda-Paz UAEMex
  • P. D. Filio-Aguilar UAEMex
  • L. López-García UAEMex

DOI:

https://doi.org/10.31349/RevMexFisE.20.010211

Keywords:

Von Neumann entropy, shannon entropy, information theory, history of entropy, systems and states, teaching entropy

Abstract

The entropy concept is studied from the perspective of several formalisms. It is reviewed the origins of this in the classical thermodynamics. It also is developed a step-by-step-clearly demonstration about it. After that, it is connected this formula with the entropy of Shannon. Elementary concepts of the quantum mechanics are explained to demonstrate the von Neumann entropy formula. It is proposed the entropy concept as a measure of the variability into the distribution of the states of a system given a set of rules that operate inside it for a while. From the perspective of the information theory, a language reaches a configuration to be optimal for communications. In this way, systems and languages can be studied using the same concept of entropy. It is stressed the importance of the teaching of the entropy because this is useful in the development of new technologies, for example the quantum communications.

References

Zemansky, Heat and Thermodynamics. (McGraw-Hill, 1957).

M. Hayashi, Quantum Information, an Introduction. (Springer, 1957).

F. Tamburini and I. Licata, Relativistic Quantum Information (Mdpi AG, 2020).

W. C. Qiang et al., Entanglement property of the Werner state in accelerated frames, Quantum Information Processing 18 (2019) 1

L. García-Colín, Y sin embargo se mueven... Teoría Cinética de la materia. (Fondo de Cultura Económica, 1955).

W. M. Saslow, A History of Thermodynamics: The Missing Manual, Entropy 22 (2019), https://doi.org/10.3390/e22010077.

E. T. Jaynes, Information Theory and Statistical Mechanics, Phys. Rev. 106 (1957) 620, https://doi.org/10.1103/PhysRev.106.620.

J. Haglund, F. Jeppsson, and H. Strömdahl, Different Senses of Entropy-Implications for Education, Entropy 12 (2010) 490, https://doi.org/10.3390/e12030490.

A. Ben-Naim, Entropy and Information Theory: Uses and Misuses, Entropy 21 (2019), 10.3390/e21121170

M. M. Kostic, The Second Law and Entropy Misconceptions Demystified, Entropy 22 (2020), https://doi.org/10.3390/e22060648.

R. Gaudenzi, Entropy? Exercices de Style, Entropy 21 (2019), https://doi.org/10.3390/e21080742.

C. H. Bennet, Notes on the history of reversible computation, IBM Journal of Research and Development 31 (1988) 16.

L. García-Colín, De la Máquina de Vapor al Cero Absoluto (Fondo de Cultura Económica, 2011), México.

L. García-Colín, Introducción a la Física Estadística (El colegio Nacional, 2011), México.

C. M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006), Singapur.

E. T. Jaynes, Gibbs vs Boltzmann Entropies, American Journal Of Physics 33 (1964) 391.

L. Boltzmann, On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium (1877), Sharp, Kim, and Franz Matschinsky. 2015. Translation of Ludwig Boltzmann’s Paper.

L. Brillouin, Science and Information Theory (Academic Press, 1960), EUA.

D. Welsh, Codes and Cryptography (Clarendon Press, Oxford, England, 1988).

T. Cover and J. Thomas, Elements of Information Theory (Wiley-Interscience, 2006), EUA.

C. E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal 27 (1948) 379.

M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2017), United Kingdom.

G. Kutrov ́atz, Heat Death in Ancient and Modern Thermodynamics, Open Systems Information Dynamics 08 (2001) 349, https://doi.org/10.1023/a:1013901920999.

Q. A. Wang, Probability distribution and entropy as a measure of uncertainty (2008), https://hal.archives-ouvertes.fr/hal-00117452, 11 pages. To be published in J. Physics A : Math. Theor. (2008).

E. Kharitonov et al., Entropy Minimization In Emergent Languages (2019), https://doi.org/10.48550/ARXIV.1905.13687.

O. Gandrillon et al., Entropy as a measure of variability and stemness in single-cell transcriptomics, Current Opinion in Systems Biology 27 (2021) 1, https://doi.org/10.1016/j.coisb.2021.05.009.

N. Yanofsky and M. Manucci, Quantum Computing For Computer Scientist (University Press, 2008), pp. 133-136, EUA.

R. Lemus and A. O. Hernández-Castillo, Symmetry projection, geometry and choice of the basis, Rev. Mex. Fis. E 61 (2015) 113.

T. A. Martínez, La Mecánica Cuántica: El experimento Stern-Gerlach, online blog (2009), URL http://la-mecanica-cuantica.blogspot.com/2009/08/el-experimento-stern-gerlach.html,

http://la-mecanica-cuantica.blogspot.com/2009/08/elexperimento-stern-gerlach.html.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010), United Kingdom.

M. Hsieh and M. M. Wilde, Entanglement-Assisted on Information Theory Communication of Classical and Quantum Information, IEEE Transactions 56 (2010) 4682.

Q. Dong et al., Tetrapartite entanglement measures of GHZ state with uniform acceleration, Physica Scripta 94 (2019) 1, https://doi.org/10.1088/1402-4896/ab2111.

J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Addison-Wesley (Jim Smith), 201), pp. 199-245, EUA.

U. Pereg, C. Deppe, and H. Boche, Quantum broadcast channels with cooperating decoders: An information-theoretic perspective on quantum repeaters, J. Math. Physics 64 (2021), https://doi.org/10.1063/5.0038083.

A. J. Torres-Arenas et al., Tetrapartite entanglement measures of W-class in noninertial frames, Chinese Physics B 28 (2019) 1.

C. H. Benett et al., Entanglement-assisted classical capacity of noisy quantum channels, Physical Review Letters 83 (1999) 3081.

A. Sagheer and H. Hamdoun, Some Properties of Multi-Qubit States In Non-Inertial Frames, In IEEE Symposium on Swarm Intelligence (SIS) (2013) pp. 141-146.

D. McMahon, Quantum Computing Explained (Wiley- Interscience A John Wiley and Sons, 2008), EUA

Downloads

Published

2023-01-13

How to Cite

[1]
J. L. Manriquez-Zepeda, J. Rueda-Paz, P. D. Filio-Aguilar, and L. López-García, “The entropy of systems”, Rev. Mex. Fis. E, vol. 20, no. 1 Jan-Jun, pp. 010211 1–, Jan. 2023.