Optimization for maximum Raman frequency conversion in supercontinuum sources using genetic algorithms
Keywords:
Solitons in optical fibers, nonlinear optics, optical frequency convertersAbstract
A frequency convertor based on the soliton self-frequency shift by the supercontinuum generation is obtained by optimization of only three parameters of a Ti:Sapphire laser pulse, namely, carrier wavelength, peak power and time duration. The frequency conversion is performed and calculated by simulating the propagation of the pulse in a simple piece of $25$ cm long commercial photonic crystal fiber pumped by the femtosecond Ti:Sapphire laser, whose only pre-requisite is to exhibit the standard supercontinuum. The resulting spectral broadening has a maximum spectral conversion in the anomalous region just by playing with the three realistic controllable parameters. Optimization is performed using pre-defined functions of genetic algorithms. Our results indicate that the efficiencies of Raman conversion achieved by merely optimizing the pulse parameters in a commercial fiber are comparable with those obtained in more elaborated Raman convertor devices.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.