Convección natural en medios porosos y libres: simulación numérica
Keywords:
Boussinesq aproximation, fixed point iterative process, tilted rectangular cavitiesAbstract
Numerical simulations are presented for natural convection in rectangular tilted cavities for a porous medium and for a homogeneous fluid as well. In both cases the mathematical modeling is based on the time dependent Boussinesq approximation which gives an incompressible fluid structure; the momentum equations are given for the Darcy ones in porous medium and for the Navier-Stokes equations in homogeneous fluid. The formulation in stream function and vorticity variables is considered. The numerical simulations are obtained with a simple numerical scheme whose effectiveness relies mainly on a fixed point iterative process to solve the elliptic nonlinear system that is obtained once a convenient second order time discretization is performed on each equation that depends explicitly in time. The iterative process leads to the solution of symmetric linear elliptic equations for which very efficient numerical solvers exist. The parameters involved in the simulations are the Rayleigh number, the aspect ratio, and the inclination angle of the cavity.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.