Experimental modeling of algorithms and components for all-optical high-bit-rate digital processors-multipliers using light bullets
Keywords:
Spatio-temporal soliton, light bullet, all-optical digital multiplication, non-collinear second harmonic generationAbstract
We present both the estimations of main parameters and the experimental data related to the modeling of algorithms and components for all-optical digital processors-multipliers, exploiting the spatio-temporal optical solitons or light bullets as bit carriers. The modern approach, based on the concept of arranging light beams in space and time using the regime of spatio-temporal solitons is examined from the viewpoint of arresting the collapse of light bullets in a graded-index self-defocusing medium with normal group-velocity dispersion. To perform all-optical computations, the beams of picosecond optical pulses, whose parameters were in one to one coincidence with previously estimated light bullets, have been shaped and employed. Two all-optical algorithms for binary data multiplication in a mixed binary format as well as the corresponding components are designed and experimentally tested with an array of non-collinear second-harmonic generation based optical AND-gates arranged in a square-law optically nonlinear medium.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.