The Einstein model and the heat capacity of solids under high pressures
Keywords:
Schrödinger equation, confined quantum systems, heat capacity, high pressureAbstract
We use the Einstein model to compute the heat capacity of a crystalline solid where the effect of high pressures is simulated through a confined harmonic oscillator potential. The partition function and the heat capacity are calculated in terms of the box size (pressure), finding a clear tendency of the latter quantity to diminish as the pressure increases. For a strong confinement regime (high pressures) the heat capacity increases monotonically with the temperature, whereas at moderate and low pressures, it attains a maximum and asymptotically becomes that corresponding to a set of free (non-interacting) particles in a box. At high temperatures we find that the specific heat value of a crystalline solid under high pressures departs from that predicted by the Dulong-Petit model.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.