Monte carlo simulations of drop growth by coalescence and collision-induced breakup
Keywords:
Cloud microphysics, Monte Carlo simulation, breakup processAbstract
A Monte Carlo framework to simulate the evolution of drop spectra by coalescence and collision-induced breakup is presented. The stochastic algorithm of Gillespie [1] for chemical reactions in the formulation proposed by Laurenzi and Diamond [2] was used to simulate the kinetic behavior of the drop population. Within Gillespie's framework, the collision-induced breakup process is modeled as a new ``chemical reaction''. The results of the Monte Carlo simulations were compared with the analytical solution to the collection-breakup equation obtained by Feingold et al. [3], for an exponential distribution of satellite drops, and a constant collection and breakup kernels. A good correspondence between the analytical and the stochastic algorithm was found for this case.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.