New coordinates for the four-body problem
Keywords:
Four-body problem, new coordinatesAbstract
A new coordinate system is defined to study the physical Four-Body dynamical problem with general masses, with the origin the of coordinates at the center of mass. The transformation from the frame of inertial coordinates involves a combination of a rotation to the system of principal axis of inertia, followed by three changes of scale modifying the principal moments of inertia yield to a body with three equal moments of inertia, and finally a second rotation that leaves unaltered the equal moments of inertia. These three transformation steps yield a mass-dependent, rigid, orthocentric tetrahedron of constant volume in the baricentric inertial coordinates. Each of those three linear transformations is a function of three coordinates that produce the nine degrees of freedom of the Physical Four-Body problem, in a coordinate system with the center of mass as origin. The relation between the well-known equilateral tetrahedron solution to the gravitational Four-Body problem and the new coordinates is exhibited, and the planar case of central configurations with four different masses is computed numerically in these coordinates.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.