Resistencia mecánica ideal de C, Si y Ge con estructura cúbica: un estudio de primeros principios
Keywords:
First principles calculations, ideal strength, elasticity modulusAbstract
We present a study of the compressive ideal strength of Carbon (C), Silicon (Si) and Germanium (Ge) with cubic structure (diamond) by means of first principles calculations. Lattice parameters, bulk modulus, shear and Young modulus and elastic constants are obtained as a function of applied stress. The values obtained about lattice parameters and elasticity constants without stress are in according with previous experimental and theoretical reports. Based on the Born-Wang and phonon criteria we have studied the ideal strength of each element. The maximum stresses values (773, 19.5 and 21.7 GPa for C, Si and Ge, respectively) are explained in terms of the band structure, charge density and atomic populations.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.