The Jones vector as a spinor and its representation on the Poincaré sphere
Keywords:
Jones vector, Poincaré sphere, polarization, spinorsAbstract
It is shown that the two complex Cartesian components of the electric field of a monochromatic electromagnetic plane wave, with a temporal and spatial dependence of the form ${\rm e}^{{\rm i} (kz - \omega t)}$, form a SU(2) spinor that corresponds to a tangent vector to the Poincaré sphere representing the state of polarization and phase of the wave. The geometrical representation on the Poincaré sphere of the effect of some optical filters is reviewed. It is also shown that in the case of a partially polarized beam, the coherency matrix defines two diametrically opposite points of the Poincaré sphere.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.