Higher dimensional gravity and Farkas property in oriented matroid theory
Keywords:
Higher dimensional gravity, gravitational duality, 2t physicsAbstract
We assume gravity in a $d$-dimensional manifold $M$ and consider a splitting of the form $M=M_{p}\times M_{q}$, with $d=p+q$. The most general two-block metric associated with $M_{p}$ and $M_{q}$ is used to derive the corresponding Einstein-Hilbert action $\mathcal{S}$. We focus on the special case of two distinct conformal factors $\psi $ and $\varphi $ ($\psi $ for the metric in $M_{p}$ and $\varphi $ for the metric in $M_{q}$), and we write the action $\mathcal{S}$ in the form $\mathcal{S=S}_{p}\mathcal{+S}_{q} $, where $\mathcal{S}_{p}$ and $\mathcal{S}_{q}$ are actions associated with $M_{p}$ and $M_{q}$, respectively. We show that a simplified action is obtained precisely when $\psi =\varphi ^{-1}$. In this case, we find that under the duality transformation $\varphi \leftrightarrow \varphi ^{-1}$, the action $\mathcal{S}_{p}$ for the $M_{p}$-space or the action $\mathcal{S}% _{q}$ for the $M_{q}$-space remain invariant, but not both. This result establishes an analogy between Farkas property in oriented matroid theory and duality in general relativity. Furthermore, we argue that our approach can be used in several physical scenarios such as 2t physics and cosmology.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.