2D radial distribution function of silicene
Keywords:
Silicene, radial distribution function, molecular-dynamicsAbstract
Silicene is the counterpart of graphene and its potential applications as a part of the current electronics, based in silicon, make it a very important system to study. We perform molecular dynamics simulations and analyze the structure of a two dimensional array of Si atoms by means of the radial distribution function at different temperatures and densities. As a first approach, the Lennard-Jones potential is used and two sets of parameters are tested. We find that the radial distribution function does not change with the parameters and resembles the corresponding to the (111) surface of the FCC structure. The liquid phase appears at very high temperatures, suggesting a very stable system in the solid phase.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.