The Liouville theorem as a problem of common eigenfunctions

Authors

  • G.F. Torres del Castillo

Keywords:

Hamilton--Jacobi equation, Liouville theorem, eigenfunctions

Abstract

It is shown that, by appropriately defining the eigenfunctions of a function defined on the extended phase space, the Liouville theorem on solutions of the Hamilton--Jacobi equation can be formulated as the problem of finding common eigenfunctions of $n$ constants of motion in involution, where $n$ is the number of degrees of freedom of the system.

Downloads

Published

2015-01-01

How to Cite

[1]
G. Torres del Castillo, “The Liouville theorem as a problem of common eigenfunctions”, Rev. Mex. Fís., vol. 61, no. 4 Jul-Aug, pp. 268–0, Jan. 2015.