Electrical circuits described by a fractional derivative with regular Kernel
Keywords:
Electrical circuits, Caputo-Fabrizio fractional derivative, fractional-order circuits, oscillationsAbstract
In this paper we presented the electrical circuits LC, RC, RL and RLC using a novel fractional derivative with regular kernel called Caputo-Fabrizio fractional derivative. The fractional equations in the time domain considers derivatives of order $(0;1]$, the analysis is performed in the frequency domain and the conversion in the time domain is performed using the numerical inverse Laplace transform algorithm; furthermore, analytical solutions are presented for these circuits considering different source terms introduced in the fractional equation. The numerical results for different values of the fractional order $\gamma$ exhibits fluctuations or fractality of time in different scales and the existence of heterogeneities in the electrical components causing irreversible dissipative effects. The classical behaviors are recovered when the order of the temporal derivative is equal to 1 and the system exhibit the Markovian nature.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.