Generador de microondas con fibra láser de Brillouin estabilizado de bajo costo para sistemas de radio sobre fibra

Authors

  • J. L. Bueno Escobedo Centro de Investigación Científica y de Educación Superior de Ensenada, B.C.
  • M.C. Maya-Sanchez Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. (CICESE)
  • S. V. Miridonov Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. (CICESE)
  • A.A. Fotiadi University of Mons, Ulyanovsk State University, Ioffe Physico-Technical Institute of the RAS,
  • V. V. Spirin Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. (CICESE)

DOI:

https://doi.org/10.31349/RevMexFis.67.109

Keywords:

Radio sobre fibra, encadenamiento por auto-inyección, oscilador optoelectrónico

Abstract

Proponemos un nuevo oscilador optoelectrónico basado en la dispersión estimulada de Brillouin para generar una portadora de microondas, ultra estrecha y estable, como lo muestra su bajo ruido de fase. Un láser de Brillouin sub-kHz de anillo de fibra con estabilización activa y encadenamiento por inyección a su bombeo DFB (del inglés, Distributed Feedback Laser) se propone como técnica básica para la generación de microondas. El oscilador optoelectrónico genera una señal portadora de ~10.946 GHz, con un ancho de banda de 300 Hz a 3 dB. Las señales armónicas parasitas están a ±50 kHz, ±450 kHz and ±900 kHz, con un nivel de 45-50 dB desde el pico de la portadora. El ruido de fase está por debajo de -90 dBc/Hz a un desplazamiento de frecuencia de la portadora de 10 kHz, este nivel se observa en una trasmisión de prueba a través de una fibra óptica de 20 Km de longitud

Author Biographies

J. L. Bueno Escobedo, Centro de Investigación Científica y de Educación Superior de Ensenada, B.C.

Investigador Titular A, Depto. Electrónica y Telecomunicaciones, División de Física Aplicada

M.C. Maya-Sanchez, Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. (CICESE)

Investigador Invitado, Depto. Electrónica y Telecomunicaciones, División de Física Aplicada

S. V. Miridonov, Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. (CICESE)

Investigador Titular C, Depto. Optica, División de Física Aplicada

A.A. Fotiadi, University of Mons, Ulyanovsk State University, Ioffe Physico-Technical Institute of the RAS,

Profesor

V. V. Spirin, Centro de Investigación Científica y de Educación Superior de Ensenada, B.C. (CICESE)

Investigador Titular D, Depto. Electrónica y Telecomunicaciones, División de Física Aplicada

References

C. Lim et al., "Evolution of radio-over-fiber technology", J. Lightwave Technology, 37 (2019) 1647.

R. Singh et al., “A review on radio over fiber communication system”, Int. J. Enhanced Research in Management & Computer Applications, 6 (2017) 23.

J. Yao, “Microwave photonics”, J. Lightwave Technol. 27 (2009) 314.

M. Merklein et al., “Widely tunable, low phase noise microwave source based on a photonic chip”, Opt. Lett. 41 (2016) 4633. https://doi.org/10.1364/OL.41.004633

Z. Xie et al., “Tunable dual frequency optoelectronic oscillator with low intermodulation based on dual-parallel Mach-Zehnder modulator”, Opt. Express 24 (2016) 30282. https://doi.org/10.1364/OE.24.030282

T. Schneider et al., “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems”, Electronics Lett. 40 (2004) 1500. http://dx.doi.org/10.1049/el:20046461

G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, San Diego, 2001).

X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers”, Opt. Lett. 22 (1997) 1329. https://doi.org/10.1364/OL.22.001329

M. Shi et al., “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering”, Opt. Express 26 (2018) 16113. https://doi.org/10.1364/OE.26.016113.

M. Shi et al., “Brillouin-based dual-frequency microwave signals generation using polarization multiplexing modulation”, Opt. Express 27 (2019) 24847. https://doi.org/10.1364/OE.27.024847.

M. Shi et al., “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering”, Opt. Express 26 (2018) 16113. https://doi.org/10.1364/OE.26.016113.

V.V. Spirin et al., “Intensity noise in SBS with injection locking generation of Stokes seed signal”, Opt. Express 14 (2006) 8328. https://doi.org/10.1364/OE.14.008328.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing”, Opt. Eng. 55 (2015) 031110. https://doi.org/10.1117/1.OE.55.3.031110.

Y. Liu et al., “Single-longitudinal-mode triple-ring brillouin fiber laser with a saturable absorber ring resonator”, J. Lightwave Technol. 35 (2017) 1744. https://doi.org/10.1109/JLT.2017.2664071.

W. loh, “Dual-microcavity narrow-linewidth Brillouin laser”, Optica 2 (2015) 225. https://doi.org/10.1364/OPTICA.2.000225.

L. Rossi et al., “Analysis of enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications”, Opt. Express 27 (2019) 29448. https://doi.org/10.1364/OE.27.029448.

V.V. Spirin et al., “Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator”, Opt. Express 28 (2020) 478. https://doi.org/10.1364/OE.28.000478.

V.V. Spirin et al., “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser”, Laser Physics Lett. 9 (2012) 377.

C.A. López-Mercado et al., “Locking of the DFB laser through fiber optic resonator on different coupling regimes”, Opt Commun., 359 (2016) 195. https://doi.org/10.1016/j.optcom.2015.09.076.

V.V. Spirin et al., “Single cut technique for adjustment of doubly resonant Brillouin laser cavities”, Opt. Lett. 38 (2013) 2528. https://doi.org/10.1364/OL.38.002528.

D.A. Korobko et al., “Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator”, Opt. Commun., 405 (2017) 253. https://doi.org/10.1016/j.optcom.2017.08.040.

http://www.corning.com/opticalfiber/index.as.

A. Done et al., “Active Frequency Stabilization Method for Sensitive Applications Operating in Variable Temperature Environments”, Adv. Elect. Comp. Eng., 18 (2018) 21. https://doi.org/10.4316/AECE.2018.01003.

C.S. Park et al., “Multiple RF-carrier Generation Using the Wavelength-dependent Stokes Shift and Selective Amplification of Stimulated Brillouin Scattering”, Int. Topical Meeting on Microwave Photonics (Conference 2005, Seoul, Korea, Korea). https://doi.org/10.1109/MWP.2005.203612.

Microwave Signal Generators, Keysight Technologies (https://www.keysight.com/mx/en/home.html)

Downloads

Published

2021-01-07

How to Cite

[1]
J. L. Bueno Escobedo, M. Maya-Sanchez, S. V. Miridonov, A. Fotiadi, and V. V. Spirin, “Generador de microondas con fibra láser de Brillouin estabilizado de bajo costo para sistemas de radio sobre fibra”, Rev. Mex. Fís., vol. 67, no. 1 Jan-Feb, pp. 109–113, Jan. 2021.