First principles calculation of structural, electronic and optical properties of (001) and (110) growth axis (InN)/(GaN)n superlattices

Authors

  • B. Bachir Bouiadjra Applied Materials Laboratory (A.M.L), Faculté de Genie Electrique, University Djillali Liabes of Sidi Bel Abbes, 2200 Sidi Bel Abbes Algeria
  • N. Mehnane Applied Materials Laboratory (A.M.L), Faculté de Genie Electrique, University Djillali Liabes of Sidi Bel Abbes, 2200 Sidi Bel Abbes Algeria
  • N. Oukli Laboratory of Macromolecular and Physical Organic Chemistry (LCOPM), Faculty of Sciences, University Djillali Liabes, 22000 Sidi Bel Abb`es, Algeria.

DOI:

https://doi.org/10.31349/RevMexFis.67.7

Keywords:

Indium nitride, Gallium nitride, Growth axis, InN/GaN Superlattices, Optical properties

Abstract

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.

References

N. Mehnane, N. Oukli , M. Ouki, Chin. J. Phys. 55 (2017) 1275, https://doi.org/10.1016/j.cjph.2017.06.004.

A. Laref, A. Altujar, S. Laref, S.J. Luo, Sol. Energy. 142 (2017) 231, https://doi.org/10.1016/j.solener.2016.12.009.

I. Gorczyca, T. Suski, N. E. Christensen, A. Svane, Cryst. Growth Des. 12 (2012) 3521; https://doi.org/10.1021/cg300315r.

M. Oukli, N. Mehnane, N. Oukli, B. Bachir Bouiadjra, H. Belghoul, Phys. E 114 (2019)113653, https://doi.org/10.1016/j.physe.2019.113653.

P. Strak, P. Kempisty, K. Sakowski, S. Krukowski, J. Cryst. Growth. 401 (2014) 652, https://doi.org/10.1016/j.jcrysgro.2014.01.069.

A. Assali, M. Bouslama, H. Abid, S. Zerroug, M. Ghaffour, F. Saidi, L. Bouzaiene, K. Boulenouar, Mater. Sci. Semicond. Process. 36 (2015) 192, https://doi.org/10.1016/j.mssp.2015.03.033.

I. Gorczyca, T. Suski, N. E. Christensen, A. Svane, J. Phys: Condens. Matter. 30 (2018) 063001, https://doi.org/10.1088/1361-648X/aaa2ae.

I. Gorczyca, T. Suski, G. Staszczak, N. E. Christensen, A. Svane, X. Wang, E. Dimakis, T. Moustakas, Jpn. J. Appl, Phys. 52 (2013) 08JL06. https://doi.org/10.7567/JJAP.52.08JL06.

D. Eric, J. Jiang, A. Imran, M. N. Zahid, A. A. Khan, Results Phys. 13 (2019) 102246. https://doi.org/10.1016/j.rinp.2019.102246.

Y. Li, B. Liu, R. Zhang, Z. Xie, Y. Zheng, Phys. E 44 (2012) 821. https://doi.org/10.1016/j.physe.2011.12.014.

K. Matsuoka, S. Yagi, H. Yaguchi, J. Cryst. Growth. 477 (2017) 201. https://doi.org/10.1016/j.jcrysgro.2017.05.021.

Z. Touaa and N. Sekkal, Acta Cryst. B 68 (2012) 378. https://doi.org/10.1107/S0108768112030091.

A. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, IEEE J. Photovolt. 2 (3) (2012) 276. DOI: 10.1109/JPHOTOV.2012.2193384.

T. Suski, T. Schulz, M. Albrecht, X. Q. Wang, I. Gorczyca, K. Skrobas, N. E. Christensen, A. Svane, Appl. Phys. Lett. 104 (2014)182103. https://doi.org/10.1063/1.4875558.

A. Duff, L. Lymperakis, J. Neugebauer, Phys. Status Solidi. B 252 (2015) 855. https://doi.org/10.1002/pssb.201451687.

M. Oukli, N. Mehnane, H. Abid, Chin. J. Phys. 54 (2016) 60. https://doi.org/10.1016/j.cjph.2016.03.004.

Y. Cherchab, B. Amrani, N. Sekkal, M. Ghezali, K. Talbi, Phys. E 40 (2008) 606. https://doi.org/10.1016/j.physe.2007.08.122.

F. Tair, N. Sekkal, B. Amrani, W. Adli, L. Boudaoud, Superlattices Microstruct. 41 (2007) 44. https://doi.org/10.1016/j.spmi.2006.11.002.

F. Szmulowicz, H. J. Haugan, G. J. Brown, Quantum Sensing and Nanophotonic Devices V, Proc. of SPIE Vol. 6900 (2008) 69000L. https://doi.org/10.1117/12.763738.

K. C. Hall, K. Gündoğdu, E. Altunkaya, W. H. Lau, Michael E. Flatté, Thomas F. Boggess, J. J. Zinck, W. B, Phys. Rev. B 68 (2003) 115311. https://doi.org/10.1103/PhysRevB.68.115311.

H. Fritzsche, M. Saoudi, Z. Yamani, W. J. L. Buyers, R. A. Cowley, R. C. C. Ward, Phys. Rev. B 77 (2008) 054423. https://doi.org/10.1103/PhysRevB.77.054423.

M. Sawicki, G. J. Bowden, P. A. J. de Groot, B. D. Rainford, J. M. L. Beaujour, Appl. Phys. Lett. 77 (2000) 573. https://doi.org/10.1063/1.127048.

G. P. Dimitrakopulos, I. G. Vasileiadis, C. Bazioti, J. Smalc-Koziorowska, S. Kret, E. Dimakis, N. Florini, Th. Kehagias, T. Suski, Th. Karakostas, T. D. Moustakas, Ph. Komninou, J. Appl. Phys. 123 (2018) 024304. https://doi.org/10.1063/1.5009060.

F. Szmulowicz, H. J. Haugan, G. J. Brown, J. Appl. Phys. 104 (2008) 074505. https://doi.org/10.1063/1.2990003.

G.F. Karavaev, V.N. Chernyshov, R.M. Egunov. Semiconductors. 37 (2003) 573. https://doi.org/10.1134/1.1575364.

H. Xia, Y. Feng, R. Patterson, X. Jia, S. Shrestha, G. Conibeer, J. Appl. Phys. 113 (2013) 164304. https://doi.org/10.1063/1.4802683.

Alistair T. Meney, Superlattices and Microstructures. 77 (1992) 31. https://doi.org/10.1016/0749-6036(92)90358-C.

I. Gorczyca, K. Skrobas, T. Suski, N. E. Christensen, A. Svane, J. Appl. Phys. 114 (2013) 223102. https://doi.org/10.1063/1.4843015.

G. Staszczak, I. Gorczyca, T. Suski, X. Q. Wang, N. E. Christensen, A. Svane, E. Dimakis, T. D. Moustakas, J. Appl. Phys. 113 (2013) 123101. https://doi.org/10.1063/1.4796101.

S.Y.Savrasov, Phys. Rev. B 54 ( 1996) 16470. https://doi.org/10.1103/PhysRevB.54.16470.

J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.

M. Merabet, S. Benalia, L. Djoudi, O. Cheref, N. Bettahar, D. Rached, R. Belacel, Chin. J. Phys 60 (2019) 462. https://doi.org/10.1016/j.cjph.2019.05.026.

Perdew J P and Wang Y, Phys. Rev. B 45 (1992) 13244. https://doi.org/10.1103/PhysRevB.45.13244.

F.D.Murnaghan, Proc. Natl. Acad. Sci. USA. 30 (1944) 5390. doi: 10.1073/pnas.30.9.244.

I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94 (2003) 3675. https://doi.org/10.1063/1.1600519.

Bo-Ting Liou, Jpn. J. Appl. Phys. 47 (2008) 3350. https://doi.org/10.1143/JJAP.47.3350.

B. Amina, A. Lachebi, A. Shuhaimi, S. A. Rahman, H. Abid, Optik. 127 (2016) 11577. https://doi.org/10.1016/j.ijleo.2016.09.014.

M. I. Ziane , Z. Bensaad , T. Ouahrani , H. Bennacer, Mater. Sci. Semicond. Process.30 (2015) 181. https://doi.org/10.1016/j.mssp.2014.08.039.

S.-g. Zhu, J.-j. Shi, S. Zhang, M. Yang, Z.-q. Bao, M. Zhang, Appl. Phys. B 104 (2011) 105. https://doi.org/10.1007/s00340-011-4473-8.

M.E. Sherwin, T.J. Drumond, J. Appl. Phys. 69 (1991) 8423. https://doi.org/10.1063/1.347412.

Z. Boussahla, B. Abbar, B. Bouhafs, A. Tadjer, J. Solid State Chem. 178 (2005) 2117. https://doi.org/10.1016/j.jssc.2005.03.047.

P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B. 77 (2008) 075202. https://doi.org/10.1103/PhysRevB.77.075202.

M. J. Espitia R, O. S. Parra, C. O. López, J. Magn. Magn. Mater. 451 (2018) 295. https://doi.org/10.1016/j.jmmm.2017.11.070.

H. Achour, S. Louhibi-Fasla, F. Mana, Phys. Procedia. 55 ( 2014 ) 17. https://doi.org/10.1016/j.phpro.2014.07.003.

S. P. Tamariz-Kaufmann, A. A. Valladares, A. Valladares, R.M. Valladares, J. Non-Cryst. Solids. 420 (2015) 7. https://doi.org/10.1016/j.jnoncrysol.2015.03.037.

J. Serrano, A. Rubio, E. Hern_andez, A. Mu~noz, A. Mujica, Phys. Rev. B 62 (2000) 16612. https://doi.org/10.1103/PhysRevB.62.16612.

M. I. Ziane, Z. Bensaad, T. Ouahrani, B. Labdelli, H. Abid, Mater. Sci. Semicond. Process. 16 (2013) 1138. https://doi.org/10.1016/j.mssp.2013.02.016.

H. Baaziz, Z. Charifi, A.H. Reshak, B. Hamad, Y. Al-Douri, Appl. Phys. A 106 (2012) 687. https://doi.org/10.1007/s00339-011-6666-8.

S. Saib, N. Bouarissa, Phys. B 387 (2007) 377. https://doi.org/10.1016/j.physb.2006.04.023.

K. Talbi, Y. Cherchab, N. Sekkal, Eur. Phys. J. Appl. Phys. 58 (2012) 30103. https://doi.org/10.1051/epjap/2012110307.

R. Ahmed, H. Akbarzadeh, F. e-Aleem, Phys. B 370 (2005) 52. https://doi.org/10.1016/j.physb.2005.08.044.

L.K. Teles, L.M.R. Scolfaro, Appl. Phys. Lett. 80 (2002) 1177. https://doi.org/10.1063/1.1450261.

D. J. Wolford, T. F. Keuch, and J. A. Bradley, Phys. Rev. B 35 (1987) 1196. https://doi.org/10.1103/PhysRevB.35.1196.

S. Froyen, D. M. Wood, A. Zunger, Appl. Phys. Lett. 54 (1989) 2435. https://doi.org/10.1063/1.101100.

S. Gopalan, N. E. Christensen, M. Cardona, Phys. Rev. B 39 (1989) 5165. https://doi.org/10.1103/PhysRevB.39.5165.

R. A. Arif, H. Zhao, N. Tansu, Appl. Phys. Lett. 92, (2008) 011104, https://doi.org/10.1063/1.2829600.

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors, Edit, John Wiley & Sons, Ltd., (2009), DOI:10.1002/9780470744383.

D. Allali, A. Bouhemadou, E. Muhammad Abud AlSafi, S. Bin-Omran, M. Chegaar, R. Khenata, A. H. Reshak, Phys. B 443 (2014) 24, https://doi.org/10.1016/j.physb.2014.02.053.

P. Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th edn. (Springer, Berlin, 2010), https://doi.org/10.1007/978-3-642-00710-1.

V. Antonov, B. Harmon, A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids, 1st edn. (Kluwer Academic Publishers, New York, 2004), https://doi.org/10.1007/1-4020-1906-8.

M. Merabet, D. Rached, R. Khenata, S. Benalia, B. Abidri, N. Bettahar, S. Bin Omran, Physica B 406 (2011) 3247, https://doi.org/10.1016/j.physb.2011.05.034.

D.R. Penn, Phys. Rev 128 (1962) 2093, https://doi.org/10.1103/PhysRev.128.2093.

Downloads

Published

2021-01-07

How to Cite

[1]
B. Bachir Bouiadjra, N. Mehnane, and N. Oukli, “First principles calculation of structural, electronic and optical properties of (001) and (110) growth axis (InN)/(GaN)n superlattices”, Rev. Mex. Fís., vol. 67, no. 1 Jan-Feb, pp. 7–17, Jan. 2021.