First principles calculation of structural, electronic and optical properties of (001) and (110) growth axis (InN)/(GaN)n superlattices
DOI:
https://doi.org/10.31349/RevMexFis.67.7Keywords:
Indium nitride, Gallium nitride, Growth axis, InN/GaN Superlattices, Optical propertiesAbstract
Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.
References
N. Mehnane, N. Oukli , M. Ouki, Chin. J. Phys. 55 (2017) 1275, https://doi.org/10.1016/j.cjph.2017.06.004.
A. Laref, A. Altujar, S. Laref, S.J. Luo, Sol. Energy. 142 (2017) 231, https://doi.org/10.1016/j.solener.2016.12.009.
I. Gorczyca, T. Suski, N. E. Christensen, A. Svane, Cryst. Growth Des. 12 (2012) 3521; https://doi.org/10.1021/cg300315r.
M. Oukli, N. Mehnane, N. Oukli, B. Bachir Bouiadjra, H. Belghoul, Phys. E 114 (2019)113653, https://doi.org/10.1016/j.physe.2019.113653.
P. Strak, P. Kempisty, K. Sakowski, S. Krukowski, J. Cryst. Growth. 401 (2014) 652, https://doi.org/10.1016/j.jcrysgro.2014.01.069.
A. Assali, M. Bouslama, H. Abid, S. Zerroug, M. Ghaffour, F. Saidi, L. Bouzaiene, K. Boulenouar, Mater. Sci. Semicond. Process. 36 (2015) 192, https://doi.org/10.1016/j.mssp.2015.03.033.
I. Gorczyca, T. Suski, N. E. Christensen, A. Svane, J. Phys: Condens. Matter. 30 (2018) 063001, https://doi.org/10.1088/1361-648X/aaa2ae.
I. Gorczyca, T. Suski, G. Staszczak, N. E. Christensen, A. Svane, X. Wang, E. Dimakis, T. Moustakas, Jpn. J. Appl, Phys. 52 (2013) 08JL06. https://doi.org/10.7567/JJAP.52.08JL06.
D. Eric, J. Jiang, A. Imran, M. N. Zahid, A. A. Khan, Results Phys. 13 (2019) 102246. https://doi.org/10.1016/j.rinp.2019.102246.
Y. Li, B. Liu, R. Zhang, Z. Xie, Y. Zheng, Phys. E 44 (2012) 821. https://doi.org/10.1016/j.physe.2011.12.014.
K. Matsuoka, S. Yagi, H. Yaguchi, J. Cryst. Growth. 477 (2017) 201. https://doi.org/10.1016/j.jcrysgro.2017.05.021.
Z. Touaa and N. Sekkal, Acta Cryst. B 68 (2012) 378. https://doi.org/10.1107/S0108768112030091.
A. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, IEEE J. Photovolt. 2 (3) (2012) 276. DOI: 10.1109/JPHOTOV.2012.2193384.
T. Suski, T. Schulz, M. Albrecht, X. Q. Wang, I. Gorczyca, K. Skrobas, N. E. Christensen, A. Svane, Appl. Phys. Lett. 104 (2014)182103. https://doi.org/10.1063/1.4875558.
A. Duff, L. Lymperakis, J. Neugebauer, Phys. Status Solidi. B 252 (2015) 855. https://doi.org/10.1002/pssb.201451687.
M. Oukli, N. Mehnane, H. Abid, Chin. J. Phys. 54 (2016) 60. https://doi.org/10.1016/j.cjph.2016.03.004.
Y. Cherchab, B. Amrani, N. Sekkal, M. Ghezali, K. Talbi, Phys. E 40 (2008) 606. https://doi.org/10.1016/j.physe.2007.08.122.
F. Tair, N. Sekkal, B. Amrani, W. Adli, L. Boudaoud, Superlattices Microstruct. 41 (2007) 44. https://doi.org/10.1016/j.spmi.2006.11.002.
F. Szmulowicz, H. J. Haugan, G. J. Brown, Quantum Sensing and Nanophotonic Devices V, Proc. of SPIE Vol. 6900 (2008) 69000L. https://doi.org/10.1117/12.763738.
K. C. Hall, K. Gündoğdu, E. Altunkaya, W. H. Lau, Michael E. Flatté, Thomas F. Boggess, J. J. Zinck, W. B, Phys. Rev. B 68 (2003) 115311. https://doi.org/10.1103/PhysRevB.68.115311.
H. Fritzsche, M. Saoudi, Z. Yamani, W. J. L. Buyers, R. A. Cowley, R. C. C. Ward, Phys. Rev. B 77 (2008) 054423. https://doi.org/10.1103/PhysRevB.77.054423.
M. Sawicki, G. J. Bowden, P. A. J. de Groot, B. D. Rainford, J. M. L. Beaujour, Appl. Phys. Lett. 77 (2000) 573. https://doi.org/10.1063/1.127048.
G. P. Dimitrakopulos, I. G. Vasileiadis, C. Bazioti, J. Smalc-Koziorowska, S. Kret, E. Dimakis, N. Florini, Th. Kehagias, T. Suski, Th. Karakostas, T. D. Moustakas, Ph. Komninou, J. Appl. Phys. 123 (2018) 024304. https://doi.org/10.1063/1.5009060.
F. Szmulowicz, H. J. Haugan, G. J. Brown, J. Appl. Phys. 104 (2008) 074505. https://doi.org/10.1063/1.2990003.
G.F. Karavaev, V.N. Chernyshov, R.M. Egunov. Semiconductors. 37 (2003) 573. https://doi.org/10.1134/1.1575364.
H. Xia, Y. Feng, R. Patterson, X. Jia, S. Shrestha, G. Conibeer, J. Appl. Phys. 113 (2013) 164304. https://doi.org/10.1063/1.4802683.
Alistair T. Meney, Superlattices and Microstructures. 77 (1992) 31. https://doi.org/10.1016/0749-6036(92)90358-C.
I. Gorczyca, K. Skrobas, T. Suski, N. E. Christensen, A. Svane, J. Appl. Phys. 114 (2013) 223102. https://doi.org/10.1063/1.4843015.
G. Staszczak, I. Gorczyca, T. Suski, X. Q. Wang, N. E. Christensen, A. Svane, E. Dimakis, T. D. Moustakas, J. Appl. Phys. 113 (2013) 123101. https://doi.org/10.1063/1.4796101.
S.Y.Savrasov, Phys. Rev. B 54 ( 1996) 16470. https://doi.org/10.1103/PhysRevB.54.16470.
J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.
M. Merabet, S. Benalia, L. Djoudi, O. Cheref, N. Bettahar, D. Rached, R. Belacel, Chin. J. Phys 60 (2019) 462. https://doi.org/10.1016/j.cjph.2019.05.026.
Perdew J P and Wang Y, Phys. Rev. B 45 (1992) 13244. https://doi.org/10.1103/PhysRevB.45.13244.
F.D.Murnaghan, Proc. Natl. Acad. Sci. USA. 30 (1944) 5390. doi: 10.1073/pnas.30.9.244.
I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94 (2003) 3675. https://doi.org/10.1063/1.1600519.
Bo-Ting Liou, Jpn. J. Appl. Phys. 47 (2008) 3350. https://doi.org/10.1143/JJAP.47.3350.
B. Amina, A. Lachebi, A. Shuhaimi, S. A. Rahman, H. Abid, Optik. 127 (2016) 11577. https://doi.org/10.1016/j.ijleo.2016.09.014.
M. I. Ziane , Z. Bensaad , T. Ouahrani , H. Bennacer, Mater. Sci. Semicond. Process.30 (2015) 181. https://doi.org/10.1016/j.mssp.2014.08.039.
S.-g. Zhu, J.-j. Shi, S. Zhang, M. Yang, Z.-q. Bao, M. Zhang, Appl. Phys. B 104 (2011) 105. https://doi.org/10.1007/s00340-011-4473-8.
M.E. Sherwin, T.J. Drumond, J. Appl. Phys. 69 (1991) 8423. https://doi.org/10.1063/1.347412.
Z. Boussahla, B. Abbar, B. Bouhafs, A. Tadjer, J. Solid State Chem. 178 (2005) 2117. https://doi.org/10.1016/j.jssc.2005.03.047.
P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B. 77 (2008) 075202. https://doi.org/10.1103/PhysRevB.77.075202.
M. J. Espitia R, O. S. Parra, C. O. López, J. Magn. Magn. Mater. 451 (2018) 295. https://doi.org/10.1016/j.jmmm.2017.11.070.
H. Achour, S. Louhibi-Fasla, F. Mana, Phys. Procedia. 55 ( 2014 ) 17. https://doi.org/10.1016/j.phpro.2014.07.003.
S. P. Tamariz-Kaufmann, A. A. Valladares, A. Valladares, R.M. Valladares, J. Non-Cryst. Solids. 420 (2015) 7. https://doi.org/10.1016/j.jnoncrysol.2015.03.037.
J. Serrano, A. Rubio, E. Hern_andez, A. Mu~noz, A. Mujica, Phys. Rev. B 62 (2000) 16612. https://doi.org/10.1103/PhysRevB.62.16612.
M. I. Ziane, Z. Bensaad, T. Ouahrani, B. Labdelli, H. Abid, Mater. Sci. Semicond. Process. 16 (2013) 1138. https://doi.org/10.1016/j.mssp.2013.02.016.
H. Baaziz, Z. Charifi, A.H. Reshak, B. Hamad, Y. Al-Douri, Appl. Phys. A 106 (2012) 687. https://doi.org/10.1007/s00339-011-6666-8.
S. Saib, N. Bouarissa, Phys. B 387 (2007) 377. https://doi.org/10.1016/j.physb.2006.04.023.
K. Talbi, Y. Cherchab, N. Sekkal, Eur. Phys. J. Appl. Phys. 58 (2012) 30103. https://doi.org/10.1051/epjap/2012110307.
R. Ahmed, H. Akbarzadeh, F. e-Aleem, Phys. B 370 (2005) 52. https://doi.org/10.1016/j.physb.2005.08.044.
L.K. Teles, L.M.R. Scolfaro, Appl. Phys. Lett. 80 (2002) 1177. https://doi.org/10.1063/1.1450261.
D. J. Wolford, T. F. Keuch, and J. A. Bradley, Phys. Rev. B 35 (1987) 1196. https://doi.org/10.1103/PhysRevB.35.1196.
S. Froyen, D. M. Wood, A. Zunger, Appl. Phys. Lett. 54 (1989) 2435. https://doi.org/10.1063/1.101100.
S. Gopalan, N. E. Christensen, M. Cardona, Phys. Rev. B 39 (1989) 5165. https://doi.org/10.1103/PhysRevB.39.5165.
R. A. Arif, H. Zhao, N. Tansu, Appl. Phys. Lett. 92, (2008) 011104, https://doi.org/10.1063/1.2829600.
S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors, Edit, John Wiley & Sons, Ltd., (2009), DOI:10.1002/9780470744383.
D. Allali, A. Bouhemadou, E. Muhammad Abud AlSafi, S. Bin-Omran, M. Chegaar, R. Khenata, A. H. Reshak, Phys. B 443 (2014) 24, https://doi.org/10.1016/j.physb.2014.02.053.
P. Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th edn. (Springer, Berlin, 2010), https://doi.org/10.1007/978-3-642-00710-1.
V. Antonov, B. Harmon, A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids, 1st edn. (Kluwer Academic Publishers, New York, 2004), https://doi.org/10.1007/1-4020-1906-8.
M. Merabet, D. Rached, R. Khenata, S. Benalia, B. Abidri, N. Bettahar, S. Bin Omran, Physica B 406 (2011) 3247, https://doi.org/10.1016/j.physb.2011.05.034.
D.R. Penn, Phys. Rev 128 (1962) 2093, https://doi.org/10.1103/PhysRev.128.2093.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 noureddine mehnane
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.