The first principle calculations of structural, magneto-electronic, elastic, mechanical, and thermoelectric properties of half-metallic double perovskite oxide Sr2TiCoO6

Authors

  • L. F. Blaha Condensed Matter and sustainable development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000, Algeria
  • A. Maafa Condensed Matter and sustainable development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000, Algeria
  • A. Chahed Condensed Matter and sustainable development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000, Algeria
  • M.A.H. Boukli Condensed Matter and sustainable development Laboratory (LMCDD), University of Sidi Bel-Abbes, Sidi Bel-Abbes 22000, Algeria
  • A. Sayade ENSCL

DOI:

https://doi.org/10.31349/RevMexFis.67.114

Keywords:

ensity functional theory, Double perovskite oxide, Half-metallic, Ferromagnetic, Elastic and mechanical properties, transport properties.

Abstract

The structural, elastic, mechanical, magneto-electronic, and thermoelectric properties of Sr2TiCoO6 double perovskite oxide have been studied within the framework of density functional theory. The FP-LAPW method within the (GGA) and (mBJ) approximations is chosen in the computational approach. This alloy crystallizes in cubic structure with the ferromagnetic phase. The computed lattice constant was found to agree with the available experimental results. This compound shows the half-metallic ferromagnetic properties. A value of 1 µB is found for the total magnetic moment with an important contribution from Co atoms. The elastic parameters reveal that Sr2TiCoO6 as being super hard and brittle. We calculated the thermoelectric properties of Sr2TiCoO6 using the Boltzmann transport equations within the DFT in a temperature range from 100 to 1000 K. The transport parameters like Seebeck coefficient, electrical thermal conductivity and the merit factor, have been put together to establish their thermoelectric response. The figure of merit value is between [0.71-0.99] indicating that our compound is a good candidate for thermoelectric applications at high and low temperatures.

References

References :

Alemán-Nava, G. S., Casiano-Flores, V. H., Cárdenas-Chávez, D. L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J., and al. Renewable energy research progress in Mexico: A review. Renew. Sust. Energ. Rev., 32, 140–153 (2014). doi:10.1016/j.rser.2014.01.004

Barnes, Paris W, Exploring Structural Changes and Distortions in Quaternary Perovskites and Defectpyrochlores Using Powder Diffraction Techniques, The Ohio State University, Ohio, Columbus, 2003.

Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. et al. Machine learning bandgaps of double perovskites. Sci Rep 6, 19375 (2016). https://doi.org/10.1038/srep19375

Villar Arribi, P., García-Fernández, P., Junquera, J., & Pardo, V. (2016). Efficient thermoelectric materials using nonmagnetic double perovskites with d0/d6 band filling. Phys. Rev. B, 94(3). doi:10.1103/physrevb.94.035124

Ghosh, S., and Gupta, D. C. Electronic, magnetic, elastic and thermodynamic properties of Cu2MnGa. J. Magn. Magn. Mater. 411, 120–127 (2016). https://doi.org/10.1016/j.jmmm.2016.03.044

Ohta, S., Nomura, T., Ohta, H., & Koumoto, K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97, 034106, (2005). doi:10.1063/1.1847723

Liu, M., Johnston, M. B., and Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395–398(2013). doi:10.1038/nature12509

Dar, S. A., Srivastava, V., & Sakalle, U. K. (2017). Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite. J. Electron. Mater., 46(12), 6870–6877 (2017). doi:10.1007/s11664-017-5731-2

Ali, Z., Ahmad, I., Khan, I., and Amin, B. Electronic structure of cubic perovskite SnTaO3. Intermetallics, 31, 287–291(2012). doi:10.1016/j.intermet.2012.08.001

Shi, Y., Guo, Y., Shirako, Y., Yi, W., Wang, X., Belik, A. A., et all.. High-Pressure Synthesis of 5d Cubic Perovskite BaOsO3 at 17 GPa: Ferromagnetic Evolution over 3d to 5d Series. J. Am. Chem. Soc., 135 (44), 16507–16516 (2013). doi:10.1021/ja4074408

Ali, Z., Sattar, A., Asadabadi, S. J., and Ahmad, I. Theoretical studies of the osmium based perovskites AOsO3 (A=Ca, Sr and Ba). J. Phys. Chem. Solids, 86, 114–121 (2015). doi:10.1016/j.jpcs.2015.07.001

Chaurasiya, R., Auluck, S., & Dixit, A. (2018). Cation modified A 2 (Ba, Sr and Ca) ZnWO 6 cubic double perovskites: A theoretical study. Comput. Condens. Matter, 14, 27–35 (2018). doi:10.1016/j.cocom.2017.12.005

Bhat, T. M., and Gupta, D. C. Robust thermoelectric performance and high spin polarisation in CoMnTiAl and FeMnTiAl compounds. RSC Advances, 6(83), 80302–80309 (2016).doi:10.1039/c6ra18934b

Takahashi, Y., Hasegawa, H., Takahashi, Y., & Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem., 205, 39–43 (2013). doi:10.1016/j.jssc.2013.07.008

He, Y., and Galli, G. Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn). Chem. Mater. 26(18), 5394–5400 (2014). doi:10.1021/cm5026766

Acharya, M., and Maiti, T. (2018). Effect of bismuth doping on thermoelectric properties of Sr2 TiCoO6. Ferroelectrics, 532(1), 28–37 (2018). doi:10.1080/00150193.2018.1430432

Saxena, M., & Maiti, T. Compositional modification of Sr 2 TiCoO 6 double perovskites by Mo and La for high temperature thermoelectric applications. Ceram. Int., 44(3), 2732–2737 (2018). doi:10.1016/j.ceramint.2017.11.003

Sudha, Saxena, M., Balani, K., & Maiti, T. (2019). Structure and thermoelectric properties of calcium doped sr2ticoo6 double perovskites. Mat. Sci. Eng. B, 244, 65–71. doi:10.1016/j.mseb.2019.04.025

Wimmer, E., Krakauer, H., Weinert, M., & Freeman, A. J. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B, 24(2), 864–875 (1981). doi:10.1103/physrevb.24.864

P. Blaha, K. Schwartz, G.K.H. Madsen, D. Kvasnicka and J. Liutz, WIEN2k An Augmented Plane Wave Plus Local Orbitals Program for calculating Cristal Properties (Vienna University of Technology, Vienna, Austria, 2001).

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77(18), 3865–3868 (1996). doi:10.1103/physrevlett.77.3865

Becke, A. D., and Johnson, E. R. A simple effective potential for exchange. Int. J. Chem. Phys., 124 (22), 221101 (2006). doi:10.1063/1.2213970

Sofi, S. A., Yousuf, S., & Gupta, D. C.. Prediction of robustness of electronic, magnetic and thermoelectric properties under pressure and temperature variation in Co2MnAs alloy. Comput. Condens. Matter, e00375 (2019). doi:10.1016/j.cocom.2019.e00375

T. Charpin, A Package for Calculating elastic tensors of cubic phases using WIEN: Laboratory of Geometrix F-75252 (Paris, France) (2001).

Madsen, G. K. H., & Singh, D. J.. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun., 175(1), 67–71 (2006). doi:10.1016/j.cpc.2006.03.007

Khandy, S. A., and Gupta, D. C. Magneto-electronic, Mechanical, Thermoelectric and Thermodynamic Properties of Ductile Perovskite Ba2SmNbO6. Mater. Chem. Phys., 121983 (2019). doi:10.1016/j.matchemphys.2019.121983

Birch, F.. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain. J. Appl. Phys, 9 (4), 279–288 (1938). doi:10.1063/1.1710417

Li, Z., Yang, M., Park, J.-S., Wei, S.-H., Berry, J. J., and Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chem. Mater., 28(1), 284–292 (2015). doi:10.1021/acs.chemmater.5b04107

A. Taleb, A. Chahed, M. Boukli, H. Rozale, B. Amrani, M. Rahmoune, A. Sayade. Structural, magneto-electronic and thermophysical properties of the new d0 quaternary heusler compounds KSrCZ (Z =P, As, Sb). Revista Mexicana de Fisica 66 (3) 265–272 (2020). https://doi.org/10.31349/RevMexFis.66.265

Mehl, M. J., Osburn, J. E., Papaconstantopoulos, D. A., and Klein, B. M. Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phy. Rev. B, 41(15), 10311–10323 (1990). doi:10.1103/physrevb.41.10311

Sin’ko, G. V., and Smirnov, N. A.. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys: Condens. Matter. 14(29), 6989–7005 (2002). doi:10.1088/0953-8984/14/29/301

Birch, F. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain. J. Appl. Phys, 9 (4), 279–288 (1938). doi:10.1063/1.1710417

Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phy. Soc. Lon. Section A, 65(5), 349–354 (1952). doi:10.1088/0370-1298/65/5/307

Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 9 (1), 49–58 (1929). doi:10.1002/zamm.19290090104

Pettifor, D. G. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol, 8(4), 345–349 (1992). doi:10.1179/mst.1992.8.4.345

Haines, J., Léger, J., and Bocquillon, G. Synthesis and Design of Superhard Materials. Annual Rev. Mater. Sci. , 31(1), 1–23 (2001). doi:10.1146/annurev.matsci.31.1.1

S.F. Pugh, Philos. Mag. 45 (1954) 823. https://doi.org/10.1080/14786440808520496

Nabi, M., Bhat, T. M., and Gupta, D. C. Magneto-Electronic, Thermodynamic, and Thermoelectric Properties of 5f-Electron System BaBkO3 J. Supercond. Nov. Magnetism 32, 1751 (2018). doi:10.1007/s10948-018-4872-8

B.benichou, Z.Nabi, B.Bouabdallah, H.Bouchenafa. Ab initio investigation of the electronic structure, elastic and magnetic properties of quaternary Heusler alloy Cu2MnSn1-xInx (x = 0, 0.25, 0.5, 0.75, 1). Revista Mexicana de F´ısica 64, 135–140 (2018). https://doi.org/10.31349/RevMexFis.64.135

Fine, M. E., Brown, L. D., and Marcus, H. L. Elastic constants versus melting temperature in metals. Scr. Mettal, 18 (9), 951–956 (1984). doi:10.1016/0036-9748(84)90267-9

Khandy, S. A., and Gupta, D. C. Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6. J. Magn. Magn. Mater, 441, 166–173 (2017). doi:10.1016/j.jmmm.2017.05.058

Madsen, G. K. H., and Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun, 175 (1), 67–71 (2006). doi:10.1016/j.cpc.2006.03.007

Bhat, T. M., and Gupta, D. C. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy. J. Elec. Mater, 45 (11), 6012–6018 (2016). doi:10.1007/s11664-016-4827-4

Khandy, S. A., and Gupta, D. C. Investigation of structural, magneto-electronic, and thermoelectric response of ductile SnAlO3from high-throughput33DFT calculations. Int. J. Quantum Chem., 117(8), e25351 (2017). doi:10.1002/qua.25351

Downloads

Published

2021-01-07

How to Cite

[1]
L. F. Blaha, A. Maafa, A. Chahed, M. Boukli, and A. Sayade, “The first principle calculations of structural, magneto-electronic, elastic, mechanical, and thermoelectric properties of half-metallic double perovskite oxide Sr2TiCoO6”, Rev. Mex. Fís., vol. 67, no. 1 Jan-Feb, pp. 114–122, Jan. 2021.