Synthesis of silicon quantum dots using chitosan as a novel reductor agent
DOI:
https://doi.org/10.31349/RevMexFis.67.249Keywords:
Silicon quantum dots, chitosan, eco-friendly synthesis.Abstract
In the present paper we report a novel synthesis method of silicon quantum dots (SiQDs) using 3-Aminopropyltriethoxysilane (APTES) as silicon precursor and low molecular weight chitosan (CS) as reducing agent. The obtained SiQDs have a hydrodynamic diameter of 2.3 nm, water dispersible, presents blue emission band at 434.5 nm (2.85 eV) with a Commission Internationale de l’Eclairage 1931 (CIE1931) chromaticity coordinates (x = 0.1665, y = 0.1222), the experimental absorbance of the SiQDS was measured and the band gap (Eg) was estimated through PerkinElmer’s method, the obtained value was 3.1 eV and a positive ζ-potential of + 35 mV, resulting in photonics, microelectronics, and biotechnological potential applications.
References
Z. Kang et al., ”Water-soluble silicon quantum dots with wavelength-tunable photoluminescence,” Adv. Mater., 21, (2009), 661-664, doi: 10.1002/adma.200801642.
S. Bhattacharjee et al., ”Cytotoxicity of surface?functionalized silicon and germanium nanoparticles: The dominant role of surface charges,” Nanoscale, 5, (2013), 4870-4883, doi: 10.1039/c3nr34266b.
S. D. Ma, Y. L. Chen, J. Feng, J. J. Liu, X. W. Zuo, and X. G. Chen, ”One-Step Synthesis of Water-Dispersible and Biocompatible Silicon Nanoparticles for Selective Heparin Sensing and Cell Imaging,” Anal. Chem., 88, (2016), 10474-10481, doi: 10.1021/acs.analchem.6b02448.
L. T. Canham, ”Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., 57, (1990), 1046-1048, doi: 10.1063/1.103561.
H. J. Higuera-Valenzuela et al., ”Efficiency enhancement of silicon solar cells by silicon quantum dots embedded in ZnO films as down-shifting coating,” J. Mater. Sci. Mater. Electron., (2020), doi: 10.1007/s10854-020-04576-0.
S. Morozova, M. Alikina, A. Vinogradov, and M. Pagliaro, ”Silicon Quantum Dots: Synthesis, Encapsulation, and Ap?plication in Light-Emitting Diodes,” Front. Chem., vol. 8, no. April, pp. 1-8, 2020, doi: 10.3389/fchem.2020.00191.
Z. Bisadi et al., ”Silicon nanocrystals for nonlinear optics and secure communications,” Phys. Status Solidi Appl. Mater. Sci., vol. 212, no. 12, pp. 2659-2671, 2015, doi:10.1002/pssa.201532528.
J. Wang, D. X. Ye, G. H. Liang, J. Chang, J. L. Kong, and J. Y. Chen, ”One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells,” J. Mater. Chem. B, vol. 2, no. 27, pp. 4338-4345,
, doi: 10.1039/c4tb00366g.
Y. Zhong et al., ”Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc., 135, (2013), 8350-8356, doi: 10.1021/ja4026227.
E. Roduner, ”Size matters: Why nanomaterials are different,” Chem. Soc. Rev., 35, (2006), 583-592, doi: 10.1039/b502142c.
S. Furukawa and T. Miyasato, ”Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B, 38, (1988), 5726-5729, doi: 10.1103/PhysRevB.38.5726.
K. Hata et al., ”Self-assembled monolayer as a template to deposit silicon nanoparticles fabricated by laser ablation,” J. Phys. Chem. B, 105, (2001), 10842-10846, doi:10.1021/jp010760b.
Canham LT. 1990. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett, 57:1046-8.
Kovalev D, Heckler H, Ben-Chorin M, et al. 1998. Breakdown of the kconservation rule in Si nanocrystals. Phys Rev Lett, 81:2803-6.
Schoenfeld O, Zhao X, Christen J, et al. 1996. Formation of Si quantum dots in nanocrystalline silicon. Solid-State Electronics, 40:605-8.
R. D. Tilley, J. H. Warner, K. Yamamoto, I. Matsui, and H. Fujimori, ”Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals,” Chem. Commun., (2005), 1833-1835, doi: 10.1039/b416069j.
Y. Zhong et al., ”Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc., 135, (2013), 8350-8356, doi: 10.1021/ja4026227.
Wilcoxon JP, Samara GA, Provencio PN. 1999. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B, 60:2704-14.
Bley RA, Kauzlarich SM, 1996. A low-temperature solution phase route for the synthesis of silicon nanoclusters. J Am Chem Soc, 118:12461-2.
B. Ghosh and N. Shirahata, ”Colloidal silicon quantum dots: Synthesis and luminescence tuning from the near-UV to the near-IR range,” Sci. Technol. Adv. Mater., 15, (2014), doi: 10.1088/1468-6996/15/1/014207.
P. Raveendran, J. Fu, and S. L. Wallen, ”Completely ’Green’ Synthesis and Stabilization of Metal Nanoparti?cles,” J. Am. Chem. Soc., 125, (2003), 13940-13941, doi: 10.1021/ja029267j.
C. Wang, X. Gao, Z. Chen, Y. Chen, and H. Chen, ”Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review,” Polymers (Basel)., 9, (2017), doi: 10.3390/polym9120689.
Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt, ”Polysaccharides and CIE1931phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles,” IET Nanobiotechnology, 5, (2011), 69-78, doi: 10.1049/iet-nbt.2010.0033.
X. Li et al., ”Liquid Metal Droplets Wrapped with Polysaccharide Microgel as Biocompatible Aqueous Ink for Flexible Conductive Devices,” Adv. Funct. Mater., 28, (2018), 1-8, doi: 10.1002/adfm.201804197.
Z. Wei et al., ”Novel biocompatible polysaccharide based self-healing hydrogel,” Adv. Funct. Mater., 25, (2015), 1352-1359, doi: 10.1002/adfm.201401502.
I. C. Dea, ”Industrial Polysaccharides,” Pure Appl. Chem., 61, (1989), 1315-1322, doi: 10.1351/pac198961071315.
S. Mizrahy and D. Peer, ”Polysaccharides as building blocks for nanotherapeutics,” Chem. Soc. Rev., 41, (2012), 2623-2640, doi: 10.1039/c1cs15239d.
C. GA©rente, P. Couespel Du Mesnil, Y. Andr ˜ A¨s, J. ˜ F. Thibault, and P. Le Cloirec, ”Removal of metal ions from aqueous solution on low cost natural polysaccharides. Sorption mechanism approach,” React. Funct. Polym., 46, (2000),
-144, doi: 10.1016/S1381-5148(00)00047-X.
J. Wang et al., ”Processable and Luminescent Supramolec?ular Hydrogels from Complex Coacervation of Polycations with Lanthanide Coordination Polyanions,” Macromolecules, (2019), doi: 10.1021/acs.macromol.9b01568.
M. Abramson, O. Shoseyov, and Z. Shani, ”Plant cell wall reconstruction toward improved lignocellulosic production and processability,” Plant Sci., 178, (2010), 61-72, doi: 10.1016/j.plantsci.2009.11.003.
A. Travan et al., ”Non-cytotoxic silver nanoparticle?polysaccharide nanocomposites with antimicrobial activity,” Biomacromolecules, 10, (2009), 1429-1435, doi: 10.1021/bm900039x.
H. Huang and X. Yang, ”Synthesis of polysaccharide?stabilized gold and silver nanoparticles: A green method,” Carbohydr. Res., 339, (2004), 2627-2631, doi:
1016/j.carres.2004.08.005.
H. Honarkar and M. Barikani, ”Applications of biopoly?mers I: Chitosan,” Monatshefte fur Chemie, 140, (2009), 1403-1420, doi: 10.1007/s00706-009-0197-4.
D. A. Alarcon-Pay ´ an, R. D. Koyani, and R. Vazquez-Duhalt, ”Chitosan-based biocatalytic nanoparticles for pol?lutant removal from wastewater,” Enzyme Microb. Technol.,100, (2017), 71-78, doi: 10.1016/j.enzmictec.2017.02.008.
C. Bergonzi et al., ”Study of 3D-printed chitosan scaffold features after different post-printing gelation processes,” Sci.Rep., 9, (2019), 1-11, doi: 10.1038/s41598-018-36613-8.
Z. Amoozgar, J. Park, Q. Lin, and Y. Yeo, ”Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery,” Mol. Pharm., 9, (2012),1262-1270, doi: 10.1021/mp2005615.
L. Sun, J. Li, J. Cai, L. Zhong, G. Ren, and Q. Ma, ”One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight,” Carbohydr. Polym., 178, (2017), 105-114, doi: 10.1016/j.carbpol.2017.09.032.
E. Susilowati, Maryani, and Ashadi, ”Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent,” IOP Conf. Ser. Mater. Sci. Eng., 349, (2018),doi: 10.1088/1757-899X/349/1/012019.
J. Wang, D.-X. Ye, G.-H. Liang, J. Chang, J.-L. Kong, and J.-Y. Chen, ”One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells,” J. Mater. Chem. B, 2, (2014), 4338-4345, doi:
1039/C4TB00366G.
J. Wu, J. Dai, Y. Shao, and Y. Sun, ”One-step syn?thesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging,” RSC Adv., 5, (2015), 83581-83587, doi: 10.1039/c5ra13119g.
S. Chinnathambi, S. Chen, S. Ganesan, and N. Hanagata, ”Silicon quantum dots for biological appli?cations,” Adv. Healthc. Mater., 3, (2014), 10-29, doi:
1002/adhm.201300157.
L. W. Zhang and N. A. Monteiro-Riviere, ”Mechanisms of quantum dot nanoparticle cellulCIE1931ar uptake,” Toxicol. Sci., 110, (2009), 138-155, doi: 10.1093/toxsci/kfp087.
S. Ohta, S. Inasawa, and Y. Yamaguchi, ”Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum dots,” Biomaterials, 33, (2012),4639-4645, doi: 10.1016/j.biomaterials.2012.03.029.
E. FrA¶hlich, ”The role of surface charge in cellular uptake and cytotoxicity of medical nanoparti?cles,” Int. J. Nanomedicine, 7, (2012), 5577-5591, doi: 10.2147/IJN.S36111.
Y. Zhong et al., ”Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging,” ACS Nano, 9, (2015), 5958-5967, doi: 10.1021/acsnano.5b00683.
L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li, and N. Ben Min, ”Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,” Appl. Phys. Lett., 850, (1995), 850, doi: 10.1063/1.116554.
X. Pan, W. Ren, L. Gu, G. Wang, and Y. Liu, ”Pho?toluminescence from chitosan for bio-imaging,” Aust. J. Chem., 67, (2014), 1422-1426, doi: 10.1071/CH14274.
H. Huang et al., ”Enhanced fluorescence of chitosan based on size change of micelles and application to directly selective detecting Fe3+ in human serum,” Biosens. Bioelectron.,42, (2013), 539-544, doi: 10.1016/j.bios.2012.10.098.
R. Duan et al., ”Chitosan-coated gold nanorods for cancer therapy combining chemical aCIE1931nd photothermal effects,” Macromol. Biosci., 14, (2014), 1160-1169, doi: 10.1002/mabi.201300563.
S. F. Shi et al., ”Biocompatibility of chitosan coated iron oxide nanoparticles with osteoblast cells,” Int. J. Nanomedicine, 7, (2012), 5593-5602, doi:
2147/IJN.S34348.
J. Dharma and A. Pisal, ”Simple Method of Measuring the Band Gap Energy Value of TiO2 in the Powder Form using a UV/Vis/NIR Spectrometer,” Shelton, CT USA.
A. N. Meza-Rocha, I. Camarillo, R. Lozada-Morales, and U. Caldino, ”Reddish-orange and neutral/warm white light emitting phosphors: Eu3+, Dy3+ and Dy3+/Eu3+ in potassium-zinc phosphate glasses,” J. Lumin., 183, (2017), 341-347, doi: 10.1016/j.jlumin.2016.11.068.
J. Selverian, ”Colorcalculator.” Osram Sylvania, 2020.
R. Lopez-Delgado et al., ”Solar cell efficiency improvement employing down-shifting silicon quantum dots,” Microsyst.Technol., 24, (2018), 495-502, doi: 10.1007/s00542-017-3405-x.
R. Duan et al., ”Chitosan-coated gold nanorods for cancer therapy combining chemical and photothermal effects,” Macromol. Biosci., 14, (2014), 1160-1169, doi:
1002/mabi.201300563.
J. Lin and Q. Wang, ”Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics,” RSC Adv., 5, (2015), 27458-27463, doi: 10.1039/c5ra01769f.
Y. Zhong et al., ”Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc., 135, (2013), 8350-8356, doi: 10.1021/ja4026227.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Hiram Jesús Higuera-Valenzuela, Pedro Amado Hernández-Abril, Jorge Luis Iriqui-Razcón, Eleazar León-Sarabia, Sergio David Leal-Soto, Mario Enrique Álvarez-Ramos, Dainet Berman-Mendoza, Hiram Jesús Higuera-Valenzuela
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.