Analytical solution to Scholte’s secular equation for isotropic elastic media
DOI:
https://doi.org/10.31349/RevMexFis.67.54Keywords:
Rayleigh wave, Scholte wave, Cauchy integralsAbstract
In terms of a method based on Cauchy integrals, we have obtained a robust analytic expression to predict a unique physical solution for the Scholte slowness in all range of possible elastic and isotropic media. Proper analysis of the discontinuities of the secular Scholte equation allows the identification of the velocity of the evanescent wave in one of three possible regimes. When the liquid phase tends to vanish, it was observed: a) the Rayleigh wave solution or the free surface limit, and b) the rarefied fluid medium limit, where there exists a gradual extinction of the Scholte wave as both the density and velocity of the fluid decrease. In general terms, the results show that the propagation speed of a Scholte wave is less than or equal to that of a Rayleigh wave.
References
C. B. Park, R. D. Miller, J. Xia, Multichannel analysis of surface
waves, GEOPHYSICS 64 (1999) 800–808.
J. Xia, R. D. Miller, C. B. Park, Estimation of nearsurface shearwave
velocity by inversion of Rayleigh waves, Geophysics 64
(3) (1999) 691–700.
D. Jongmans, D. Demanet, The importance of surface waves
in vibration study and the use of Rayleigh waves for estimating
the dynamic characteristics of soils, Engineering Geology
–113.
G. Athanasopoulos, P. Pelekis, G. Anagnostopoulos, Effect of
soil stiffness in the attenuation of Rayleigh-wave motions from
field measurements, Soil Dynamics and Earthquake Engineering
(2000) 277–288.
C. G. Lai, G. J. Rix, S. Foti, V. Roma, Simultaneous measurement
and inversion of surface wave dispersion and attenuation
curves, Soil Dynamics and Earthquake Engineering 22 (2002)
–930.
J.W. S. Rayleigh, On waves propagated along the plane surface
of an elastic solid, Proc. London Math. Soc. 17 (1885) 4–11.
M. Rahman, J. R. Barber, Exact expressions for the roots of the
secular equation for rayleigh waves, Journal of Applied Mechanics
(1995) 250–252.
L. Knopoff, On rayleigh wave velocity, Bull.Seismol.Soc.Am. 42
(1952) 307–308.
M. Hayes, R. S. Rivlin, A note on the secular equation for
Rayleigh Waves, ZAMP 13 (1962) 80–83.
H. Mechkour, The exact expressions for the roots of Rayleigh
wave equation, BSG Proceedings 8 (2003) 96–104.
P. Malichewsky, Short Note A note on Rayleigh-wave velocities
as a function of the material parameters, Geofísica Internacional
(2004) 507–509.
X.-F. Liu, Y.-h. Fan, A New Formula for the Rayleigh Wave
Velocity, Advanced Materials Research 452 (2012) 233–237.
P. G. Malischewsky, Comment to “A new formula for the velocity
of Rayleigh” waves by D. Nkemzi [Wave Motion 26 (1997)
-205],Wave Motion 31 (2000) 93–96.
M. Romeo, Rayleigh waves on a viscoelastic solid half-space,
The Journal of the Acoustical Society of America 110
(2001) 59–67.
G. Caviglia, A. Morro, Inhomogeneous waves in solids and fluids,
st Edition, Vol. 4,World scientific publishing, New Jersey,
D. Nkemzi, A new formula for the velocity of rayleigh waves,
Wave Motion 26 (1997) 199–205.
J. Antúnez-García, Sobre la ecuación característica de las ondas
Rayleigh y Stoneley, Master’s thesis, CICESE, Ensenada,
Baja California, México (2003).
P. C. Vinh, Scholte-wave velocity formulae, Wave Motion 50 (2013) 180–190.
R. Stoneley, Elastic waves at the surface of separation of two
solids, Proc. Roy. Soc. London 106 (1924) 416–428.
J. G. Scholte, The range of existence of Rayleigh and Stoneley
waves, Geophysical Journal International 5 (1947) 120–126.
I. A. Viktorov, Rayleigh and Lamb waves, 1st Edition, Plenum
Press, New York, 1967.
E. Strick, A. S. Ginzbarg, Stoneley-wave velocities for a fluidsolid
interface, Bull. Seismol. Soc. Am. 46 (1956) 281–292.
E. E. Burniston, C. E. Siewert, The use of Riemann problems
in solving a class of transcendental equations, Mathematical
Proceedings of the Cambridge Philosophical Society 73 (1973)
–118.
P. Rae, D. Dattelbaum, The properties of
poly(tetrafluoroethylene) (PTFE) in compression, Polymer 45
(22) (2004) 7615–7625.
D. R. Lide, CRC Handbook of Chemistry & Physics 2008 -
, 89th Edition, Taylor & Francis Group, 2008.
C. R. Bently, The Ross Ice Shelf: Glaciology and Geophysics
Antartic Research Series: Paper 3, Vol. 42, American Geophysical
Union, Florida Ave., N. W., 1984.
F. J. Millero, History of the Equation of State of Seawater,
Oceanography 23 (2010) 18–33.
G. S. K. Wong, Speed of sound in seawater as a function
of salinity, temperature, and pressure, The Journal of
the Acoustical Society of America 97 (1995) 1732.
P. Henrici, Computational Complex Analysis, Vol. II, Willey,
New York, 1984.
E. E. Burniston, C. E. Siewert, Exact analytical solutions
of the transcendental equation α sinζ=ζ, SIAM Journal on
Applied Mathematics 24 (1973) 460–466.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Joel Antúnez-García, Donald H. Galván, Jonathan Guerrero-Sánchez, Fabian N. Murrieta-Rico, Rosario I. Yocupicio-Gaxiola, Sergio Fuentes-Moyado
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.