3D Monte Carlo analysis on photons step through turbid medium by Mie scattering
DOI:
https://doi.org/10.31349/RevMexFis.67.292Keywords:
Photon Scattering, turbid media, Monte Carlo-Mie Method, Spherical harmonics.Abstract
Photon Scattering Profiles in a turbid media were investigated through numerical simulation based on Monte Carlo-Mie method, at this present work. Using Wolfram Mathematics in the program algorithm. Photon Scattering was treated using electromagnetic spherical harmonics waves, in three-dimensional scattering. The proposal, as an alternative to the Henyey-Greensein phase approximation, was defining an unit vector that represents a phase distribution, as an equivalent function with three vector components, within the turbid media. Associating the step component, as projection using Legendre polynomials and for the transverse plane components were defining as vector bases in terms of Legendre-Hankel functions, according to Gustav Mie theory. This composite vector was defined as a step function and was evaluated within Monte Carlo algorithm, obtaining simulations of light scattering. Backscatter profiles were compared for different geometric dimensions of the spherical particles within the turbid media, including a validation of the model with an experimental Lidar signal from low clouds, obtaining physical properties of the turbid media by the proposed theoretical model.
References
-. Bissonnette, L.R., bruscaglioni, P., Ismaelli, A., Zaccanti, G., Cohen, A., Benayahu, Y., Kleiman, M., Egert, S., Flesia, C., Schwendimann, P., Starkov, A.V., Noormohammadian, M., Oppel, U.G., Winker, D.M., Zege, E.P., Katsev, I.L., Polonsky, I.N. Appl. Phys. B 60, 355-362 (1995).
-Zhensen, Wu., Yi, Yan., Lihong, Chen. International Journal of Infrared and Millimeter Waves, Vol. 13, No. 7 (1992).
-Liaparinos, P.F. Med. Phys. 40(10) October 2013.
-Yuzaho, Ma., Werong, Liu., Yafeng, Cui., Xinglong, Xiong. Opt. Rev. 24, 590-599 (2017).
-Bohren Craig and Huffman Donald, Absorption and Scattering of Light by Small Particles, Ed.( Jhon Wiley & Sons 1983), pp. 57-63, 82-103, 111-112.
-. Leung Tsang, Jin Au Kong, Kung-Hau Ding. Scattering of Electromagnetic Waves, Ed. ( Jhon Wiley & Sons 2000), pp. 32-41.
-I. M. Sóbol, Método de Montecarlo, Segunda Edición, Ed. (MIR, Moscú, 1983), pp. 55-62.
-Stratton Julius Adams, Electromagnetic Theory, Ed. ( McGraw Hill 1941), pp. 392-420.
-Badrinath Roysan, Andrew R. Cohen, P.H. Getto, Peter R. Boyce. IEEE Transactions on industry applications, VOL. 29 NO.3 MAY/JUNE 1993.
-E Reynoso Lara, J Davila Pintle, Y Elinor Garcia. Opt. Pura Apl. 47 (3) 177-181 (2014).
-F. Fabregat-Santiago, N.S. Fierrols, G. Garcia-Belmonte, J. Bisquert e I. Morell, Estudio de los diferentes estados energéticos del agua del suelo en función de los fenómenos de relajación dieléctrica. Estudios de la Zona No Saturada del Suelo. Eds. R. Muñoz-Carpena, A. Ritter, C. Tascón. ICIA: Tenerife. 1999 ISBN 84-699-1258-5.
-http://www.vaxasoftware.com/doc_edu/fis.html. (accessed 2019 December 06).
-Perez Gracia María de la Vega, Radar de subsuelo Evaluación para aplicaciones en arqueología y en patrimonio histórico-artístico. ISBN: 846996884X (Tesis Doctoral) pag.206.
-http://glossary.ametsoc.org/wiki/Raindrop (accessed 2019 December 06).
-Claus Weitkamp, Lidar Range-Resolved Optical Remote Sensing of the Atmosphere. Ed Springer Science in Optical 2005, pp. 6-11.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Enrique Perez Mayesffer Azcarraga
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.