Structural, electronic, and elastic properties of Tetragonal Sr0.5Be0.5TiO3: Ab-initio calculation.
DOI:
https://doi.org/10.31349/RevMexFis.67.299Keywords:
Ab-initio calculation, Elastics constants, Sr0.5Be0.5TiO3, Tetragonal N°123, Wien2kAbstract
In this theoretical study, we presents for the first time, to the best of our knowledge, the structural, electronic and elastic properties of perovskite Sr0.5Be0.5TiO3 type structure (Tetragonal), P4/mmm, space group, 123.using full potential linearized augmented plane wave (FP-LAPW) method on the basis of density functional theory (DFT) integrated in the Wien2k code . The generalized gradient approximation (GGA-PBEsol) and local density approximation has been used for the exchange correlation potential .The electronic properties represented by the band structure (BS) and DOS as well as the (PDOS) partial density of states, allowed to obtain semiconductor compound, which have been calculated with mBJ approximation. The elastic constants were reported and we verified the stability conditions of our materials elastically. These theoretical results open the way for experimental and other theoretical studies of this compound.
References
Macquart, René Bertrand ,”Structural studies of ferroelectric oxides : a gentle introduction to the synthesis and structural characterization of ferroelectric materials “ 2003.
M. E. Lines and A. M. Glass, “Principles and Applica-tions of Ferroelectrics and Related Materials,” Clarendon, Oxford, 1977.
Yamada, Y., Shirane, G., & Linz, A. (1969). Study of Critical Fluctuations in BaTiO3by Neutron Scattering. Physical Review, 177(2), 848–857. doi:10.1103/physrev.177.848
Lytle, F. W. (1964). X‐Ray Diffractometry of Low‐Temperature Phase Transformations in Strontium Titanate. Journal of Applied Physics, 35(7), 2212–2215. doi:10.1063/1.1702820
Beryllium Science & Technology Association, BeST.
Carrasco, J., Illas, F., Lopez, N., Kotomin, E. A., Zhukovskii, Y. F., Evarestov, R. A., … Maier, J. (2006). First-principles calculations of the atomic and electronic structure ofFcenters in the bulk and on the (001) surface ofSrTiO3. Physical Review B, 73(6). doi:10.1103/physrevb.73.064106
Muhamad, N. F., Maulat Osman, R. A., Idris, M. S., & Mohd Yasin, M. N. (2017). Physical and electrical properties of SrTiO3 and SrZrO3. EPJ Web of Conferences, 162, 01052. doi:10.1051/epjconf/201716201052
Argaman, Nathan; Makov, Guy (2000). "Density Functional Theory -- an introduction".
American Journal of Physics. 68 (2000): 69–79. arXiv:physics/9806013.Doi:10.1119/1.19375.
https://en.wikipedia.org/wiki/Density_functional_theory.
P.Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka andJ. Luitz, Vienna University of Technology, Vienna, Austria (2001). SBN 3-9501031-1-2.
Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138. doi:10.1103/physrev.140.a1133
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406
Tran, F., & Blaha, P. (2009). Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Physical Review Letters, 102(22). doi:10.1103/physrevlett.102.226401
Becke, A. D., & Roussel, M. R. (1989). Exchange holes in inhomogeneous systems: A coordinate-space model. Physical Review A, 39(8), 3761–3767. doi:10.1103/physreva.39.3761
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. doi:10.1103/physrevb.37.785
F. D. Murnaghan, Proc. Natl. Acad. Sci. USA, Vol.30, 1944, pp. 244-247.
M. Jamal, IRelast and 2DR-optimize packages are provided by M. Jamal as part of the commercial code WIEN2K, (2013).
K. H. Hellwege and A. M. Hellwege,Numerical Data and Functional Relationships in Science and Technology, Landolt-B ̈ornstein, New Series Group III, Ferroelectrics and Related Substances(Springer Verlag, Berlin, 1969), vol.3
J. A.Camargo-Martı́nez and R .Baquero,The band gap problem: the accuracyof the Wien2k code onfronted, arXiv:1208.2057v2 (2013)
Bilbao Crystallographic Server http://www.cryst.ehu.es .
Ivanovskii, A. L. (2012). Mechanical and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials. Progress in Materials Science, 57(1), 184–228. doi:10.1016/j.pmatsci.2011.05.004
IR Shein, AL Ivanovskii- arXiv preprint arXiv:1208.4456, 2012
Mouhat, F., & Coudert, F.-X. (2014). Necessary and sufficient elastic stability conditions
in various crystal systems. Physical Review B, 90(22). DOI:10.1103/physrevb.90.224104.
Abraham, J. A., Pagare, G., & Sanyal, S. P. (2015). Electronic Structure, Electronic Charge Density, and Optical Properties Analysis of GdX3 (X = In, Sn, Tl, and Pb) Compounds: DFT Calculations. Indian Journal of Materials Science, 2015, 1–11. doi:10.1155/2015/296095 .
R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proceedings of the Physical Society, Vol. 65, No. 5,1952, pp. 349- 354. DOI:10.1088/0370-1298/65/5/307.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 ted med
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.