Cluster folding optical potential analysis for 6Li+28Si elastic scattering

Authors

  • S. Hamada Tanta University
  • Awad A. Ibraheem Faculty of Science King Khalid University

DOI:

https://doi.org/10.31349/RevMexFis.67.276

Keywords:

Elastic scattering, phenomenological potential, Cluster folding, Coupled channels

Abstract

Available experimental angular distribution data for 6Li+28Si elastic scattering in the energy range 16 – 318 MeV are re-analyzed phenomenologically on the basis of optical model using Woods-Saxon (WS) potentials for both real and imaginary parts, while the semi microscopic analysis was performed on the basis of cluster folding potential. Cluster folding potential was generated based on the appreciable cluster structure and breakup of 6Li into a deuteron orbiting a core of α-particle. Although several data sets in a wide range of energies are subjected to investigation, the theoretical calculations using the different concerned potentials are fairly reproduced the experimental data in the whole energy range. The extracted real and imaginary volume integrals and reaction cross sections values are compared to the previously reported ones and they found to be in a good agreement

References

References

A. Pakou et al., Phys. Lett. B 556 (2003) 21

A. Pakou et al., Phys. Rev. Lett 90 (2003) 202701

A. Pakou et al., Phys. Rev. C76 (2007) 054601

A. Pakou et al., Phys. Lett. B 633 (2006) 691

M. Sinha et al., EPJ Web of Conf. 17 (2011) 03004

K. Bethge, C. M. Fou and R. W. Zurmuhle, Nucl. Phys. A123 (1969) 521.

M. Hugi, J. Lang, R. Muller and E. Ungricht, Nucl. Phys. A368 (1981) 173

M. F. Vineyard, J. Cook and K. W. Kemper, Nucl. Phys. A405 (1983) 429.

N. Anantaraman, H. W. Fulbright and P. M. Stwertka, Phys. Rev. C22 (1980) 501

P. Schwandt, W. W. Jacobs, M. D. Kaitchuck and P. P. Sing, Phys. Rev. C24 (1981) 1522

R. M. DeVries, D. A. Goldberg, J. W. Watson, M. S. Zisman and J. G. Cramer, Phys. Rev. Lett. 39 (1977) 450

A. Nadasen et al., Phys. Rev. C39 (1989) 536

X. Chen,Y. - W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood, Phys. Rev. C80 (2009) 014312

A. Nadasen et al., Phys. Rev C47 (1993) 674

A. Gómez Camacho, A. Diaz-Torres, P. R. S. Gomes, and J. Lubian, Phys. Rev. C 91 (2015) 014607

A. Gómez Camacho, Bing Wang, and H. Q. Zhang, Phys. Rev. C 97 (2018) 054610

M. Anwar, Phys. Rev. C 101 (2020) 064617

R. I. Badran and Dana Al-Masri, Can. J. Phys. 91 (2013) 355

M. A. Hassanain, M. Anwar, and Kassem O. Behairy, Phys. Rev. C 97 (2018) 044610

M El-Azab Farid, Awad A Ibraheem, J H Al-Zahrani, W R Al-Harbi and M A Hassanain, J. Phys. G: Nucl. Part. Phys. 40(2013) 075108

Yongli Xu, Yinlu Han, Jiaqi Hu, Haiying Liang, Zhendong Wu, Hairui Guo, and Chonghai Cai, Phys. Rev. C 98 (2018) 024619

Y. Sakuragi, Phys. Rev. C35 (1987) 2161

G. R. Satchler and W. G. Love, Phys. Lett.76B, 23 (1978).

D. P. Stanley, F. Petrovich, and P. Schwandt, Phys. Rev.C22, 1357(1980)

C. W. Glover, R. I. Cutler and K. W. Kemper, Nucl. Phys. A341 (1980) 137

Z. Majka, H. j. Gils and H. Rebel, Z. Phys. A288(1978)139

M . E . B randen and G. R. Satchler, Phys. R ep. 285, 143 (1997 ).

Y. Sakuragi, M. Yahiro, and M. Kamimura, Prog. Theor. Phys. Suppl. 89, 136 (1986).

Y. Sakuragi, M. Ito, Y. Hirabayashi, and C . Samanta, Prog. Theor. Phys.98 , 521 (1997 ).

I. J. Thompson, Comput. Phys. Rep.7 (1988) 167

F. Hinterberger, G. Mairle, U. Schmidt-Rohr, G. J. Wagner, P. Turek, Nucl. Phys. A111 (1968) 265.

B. Tatischeff, I. Brissaud, M. K. Brussel, M. Sowinski, Nucl. Phys. A155 (1970) 89.

Sh. Hamada and Awad A. Ibraheem, Int. J. Mod. Phys. E 28 (2019) 1950108.

D. A. Goldberg, S. M. Smith, G. F. Burdzik, Phys. Rev. C 10 (1362) 1974

P. Schwandt, S. Kailas, W. W. Jacobs, M. D. Kaitchuck, W. Ploughe, Phys. Rev. C 21 (1656) 1980

M. E. Brandan, Phys. Rev. Lett. 49 (1132) 1982

M. Buenerd et al., Phys. Rev. C 26 (1299) 1982

Downloads

Published

2021-07-15

How to Cite

[1]
S. Hamada and A. A. Ibraheem, “Cluster folding optical potential analysis for 6Li+28Si elastic scattering”, Rev. Mex. Fís., vol. 67, no. 2 Mar-Apr, pp. 276–284, Jul. 2021.