Laser cavity with a Van der Pol dynamics
DOI:
https://doi.org/10.31349/RevMexFis.67.154Keywords:
Van der Pol map, phase conjugate, Laser DynamicsAbstract
In this article, a beam within a ring phase conjugated laser is described by means of a Van der Pol bidimensional dynamic map using an ABCD matrix approach. Explicit expressions for the intracavity chaos-generating matrix elements were obtained; furthermore, computer calculations for different values of Van der Pol map’s parameters were made. The rich dynamic behavior displays periodicity when the parameter ¹ (which determines the non-inearity term) takes values around zero. These results were observed in phase diagrams and in diagrams of the optical thickness of the intracavity element.References
B. Van der Pol and J. Van der Mark, Frequency demultiplication, Nature, 120 (1927), 363–
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membranes.
BiophysicsJ, 1 (1961), 445–466.
J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line simulating
nerve axon. Proc. IRE, 50 (1962), 2061–2070.
J. Cartwright, V. Eguiluz, E. Hernandez-Garcia, and O. Piro, Dynamics of elastic excitable
media. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 2197–2202.
A.D. Case, P.J. Soan, M.J. Damzen and M.H.R. Hutchinson, Coaxial flash-lamp-pumped
dye laser with a stimulated Brillouin scattering reflecto. J.Opt. Soc. Am. B 9 (1992), 374.
H.-J. Eichler, R. Menzel, and D. Schumann. Appl. Opt.,31 No. 24 (1992), 5038-5043.
M. O’Connor, V. Devrelis, and J. Munch,in Proc. Int. Conf. on Lasers’95 (1995), pp.500-
M.J. Damzen, V.I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering:
Fundamentals and Applications, Institute of Physics, Bristol (2003)
V. Aboites, Dynamic of a Laser Resonator, IJPAM 36(4) (2007), 352-354.
M. Wilson, V. Aboites, Optical resonators and dynamic maps, Proceedings SPIE-The
International Society for Optical Engineering. 8011 (2011), 215.
M. Wilson, V. Aboites, Y. Barmenkov, A. Kir’yanov, Optical Devices Chapter XX, Optical
Resonators and DynamicMaps. Ed. Intech, (2012). 17-36.
V. Aboites, Y. Barmenkov, A.V. Kiryanov, M. Wilson, Bidimensional dynamic maps in
Optical Resonators, Rev.Mex.Fis. 60 (2014), 13-23.
V. Aboites, M. Huicochea, Hénon Beams. International Journal of Pure and Applied
Mathematics. 65 (2010), 129-136.
V. Aboites, D. Liceaga, R. Jaimes-Reategui, J. Garcia, Bogdanov Map for Modelling a
Phase-Conjugated Ring Resonator. Entropy. 21 (2019), 384.
V. Aboites, D. Liceaga, A. Kir’yanov, M. Wilson, Ikeda Map and Phase Conjugated Ring
Resonator Chaotic Dynamics. Applied Mathematics Information Sciences. 10 (2016), 1-
D. Dignowity, M. Wilson, P. Rangel-Fonseca, V. Aboites, Duffing spatial dynamics
induced in a double phase-conjugated resonator. Laser Physics. 23 (2013), 5002.
V. Aboites, A. Pisarchik, A. Kir’yanov, X. Gomez-Mont, Dynamic Maps in
PhaseConjugated Optical Resonators. Optics Communications. 283 (2010), 3328-3333.
V. Aboites, M. Wilson, F. Lomeli, Standard Map Spatial Dynamics in a RingPhaseConjugated Resonator. Applied Mathematics Information Sciences. 1 (2015), 1-5.
V. Aboites, Y. Barmenkov, A. Kir’yanov, M. Wilson, Tinkerbell beams in a non-linear
ringresonator. Results in Physics. 2 (2012), 216-220.
V. Aboites, M. Wilson, Tinkerbell chaos in a ring phase-conjugated resonator.Int. J. Pure
Appl. Math. 54 (2009),429–435.
Azarkhalili, Behrooz Moghadas, Peyman Rasouli, Mohammad, Approximation Behavior
of Van der Pol Equation: Large and Small Nonlinearity Parameter. Proceeding of the
International MultiConference of Engineers and Computer Scientists 2011, Vol. II.
Nguyen-Van, Triet and N. Hori, A new discrete-time model for a van del Pol Oscillator.
Proceedings of the SICE Annual Conference.10 (2010), 2699 – 2704.
Y Hafeez, Hafeez. Analytical Study of the Van der Pol Equation in the Autonomous
Regime. Progressin Physics. 11 (2015), 252-255.
Hallbach, K. Matrix. Representation of Gaussian Optics. Am. J. Phys. (1964), 32, 90.
WikipediaList of chaotic maps. https://en.wikipedia.org/wiki/Listofchaoticmaps
W. Albarakati, N. Lloyd, J. Pearson, Transformation to Lienard form. Electronic Journal of
Differential Equations. 2000 (2000).
T. Hará, T. Yoneyama, J. Sugie, A necessary and sufficient condition for oscillation of the
generalized Lienard equation. Annali di Matematica pura ed applicata 154 (1989), 223–
A.O. Ignat’ev, Estimate for the amplitude of the limit cycle of the Lienard equation.
Diff Equat 53 (2017), 302–310.
K. Nipp, D. Stoffer, Invariant curves for the discretised van der Pol equation .Bit
Numer Math 57 (2017), 463–497
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Vicente Aboites
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.