Detección intradina en comunicaciones ópticas con modulación de fase binaria empleando un lazo de Costas en el dominio del procesamiento digital de señales

Authors

  • E. A. Dominguez Ratamoza CICESE
  • A. Arvizu Mondragón Centro de Investigación Científica y de Educación Superior de Ensenada
  • F. Rojas Iñiguez Centro de Nanociencias y Nanotecnología de la UNAM
  • F. J. Mendieta Jiménez Centro de Investigación Científica y de Educación Superior de Ensenada
  • J. Santos Aguilar Centro de Investigación Científica y de Educación Superior de Ensenada

DOI:

https://doi.org/10.31349/RevMexFis.67.238

Keywords:

Detección óptica Coherente, lazo de Costas, Detección Intradina

Abstract

We report a Costas loop for demodulation of an optical field with binary phase modulation (BPSK). The loop operates in the domain of digital signal processing (DSP) as part of an intradyne coherent digital receiver. The practical implementation of BPSK demodulation in the optical domain is generally not feasible. For this reason, we use techniques based on high-speed digitization of the post-photodetection electrical observable, and the Costas loop in DSP acts on the digitized signal. We chose this loop because it is an optimal structure for both BPSK demodulation and carrier synchronization. Typically, Costas loops for BPSK demodulation operate on a carrier with a frequency higher than the bit rate. However, as we demonstrate in this work, this loop can also perform adequately for a bit rate higher than the carrier frequency (intradyne detection). To the best of our knowledge, the Costas loop in DSP for intradyne BPSK demodulation is reported for the first time in this work. To design the intradyne Costas loop, we used the PLL-equivalent model of a conventional Costas loop. For comparison and performance evaluation, we implemented in simulation, first, a traditional Costas loop and later an intradyne one. We use real-world signals (binary data and additive noise) acquired by digitization for our simulations. Finally, we performed the intradyne Costas loop’s characterization using a digitized post-photodetection electrical signal obtained at the output of our digital coherent receiver. We observe a performance very close to that obtained by simulation.

Author Biographies

E. A. Dominguez Ratamoza, CICESE

Departamento de Electrónica y Telecomunicaciones, Investigador

A. Arvizu Mondragón, Centro de Investigación Científica y de Educación Superior de Ensenada

Departamento de Electrónica y Telecomunicaciones, Investigador

F. Rojas Iñiguez, Centro de Nanociencias y Nanotecnología de la UNAM

Departamento Física Teórica, Investigador

F. J. Mendieta Jiménez, Centro de Investigación Científica y de Educación Superior de Ensenada

Departamento de Electrónica y Telecomunicaciones, Investigador

J. Santos Aguilar, Centro de Investigación Científica y de Educación Superior de Ensenada

Departamento de Electrónica y Telecomunicaciones, Investigador

References

Rongqing Hui, Introduction to Fiber-Optic Communications, (Academic Press, San Diego, CA, 2020) pp. 337-339,417-418, 488-489,555-556.

Nakazawa, M., Kikuchi, K., Miyazaki, T. (Eds.), High Spectral Density Optical Communication Technologies, (Springer-Verlag, Berlin Heidelberg, 2010), pp. 11-20.

Le Nguyen Binh, Advanced Digital Optical Communications,(CRC Press Taylor & Francis Group, Boca Raton, FL, 2015), pp. 1-11.

Z. Zhang et al.,High-speed Coherent Optical Communication with Isolator-free Heterogeneous Si/III-V Lasers, Journ. of Lightw. Techn. (August),2020,1, https://doi: 10.1109/JLT.2020.3015738.

Xu, M., He, M., Zhang, H. et al., High-performance coherent optical modulators based on thin-film lithium niobate platform, Nat Commun (11:3911), 2020,1 https://doi.org/10.1038/s41467-020-17806-0.

Jiali Wu and Xizheng Ke, Experimental on correction of wavefront distortion in coherent optical communication system, Proc. SPIE Sixth Symposium on Novel Optoelectronic Detection Technology and Applications (11455), 17 April 2020, 114552R https://doi.org/10.1117/12.2563985.

S. Ritter, An Optimum Phase Reference Detector for Fully Modulated Phase Shift Keyed Signals, IEEE Trans. on Aero. and Elect. Syst., (Vol. AES-5, No. 4), 1969, 627.

https://doi.org/10.1109/TAES.1969.309945

J. G. Proakis, Digital Communications 4th Edition, (McGraw-Hill, New York, 2001), pp.339-356.

Mei, C.Y., Sha'ameri, A.Z., Boashash, B., Efficient phase estimation for the classification of digitally phase modulated signals using the cross-WVD: a performance evaluation and comparison with the S-transform, EURASIP J. Adv. Signal Process. (65), (2012), 1. https://doi.org/10.1186/1687-6180-2012-65.

J. P. Costas, Synchronous Communications, Proc. of the IRE, (vol. 44, no. 12), 1956, pp. 1713. https://doi.org/10.1109/JRPROC.1956.275063.

Josue A. Lopez Leyva, Arturo Arvizu Mondragon, Edith Garcia, Francisco J. Mendieta, Eduardo Alvarez Guzman, Phillipe Gallion, Detection of phase-diffused weak-coherent-states using an optical Costas loop, Opt. Eng. (51(10)),2012, pp.105002, https://doi.org/10.1117/1.OE.51.10.105002

Q. Xu, A. Arvizu Mondragon, P. Gallion and F. J. Mendieta, Homodyne In-Phase and Quadrature Detection of Weak Coherent States With Carrier Phase Tracking, IEEE Journal of Selected Topics in Quantum Electronics, (vol. 15, no. 6), 2009, pp. 1581-1590, https://doi.org/10.1109/JSTQE.2009.2023803

A. Arvizu-Mondragón, et al., Optical Communication Receiver Based on a Switched –Quadrature Costas Loop, Journ. of App. Res. and Techn., (9 (3)), 2011, pp. 443 ,

https://doi.org/10.22201/icat.16656423.2011.9.03.436

Spilker, J., Digital Communications by satellite, (Prentice-Hall, Englewood Cliffs, NJ), 1977, pp. 297.

Gardner, Floyd M., Phaselock techniques, 3rd edition. (John Wiley & Sons, Palo Alto, California, 2005), pp.2-14, 97-121.

Blanchard A., Phase locked loops, application to coherent receiver design, (John Wiley and sons, New York, NY), 1976, pp.3-7, 81-138, 302-314.

D. R. Stephens, Phase-Locked Loops for Wireless Communications: Digital, Analog and Optical Implementations, 2nd edition, (Kluwer Academic Publishers, Norwell, Massachusetts), 2002, pp. 1-56.

F. M. Gardner, Phaselock techniques, 2nd Edition, (John Wiley and Sons, New York, NY), 1979, pp.8-11, 21-31, 43-90.

Mischa Schwartz, Transmisión de información, modulación y ruido, tercera edición, (McGraw-Hill, México),1983, pp. 233.

Jeff Feigin, Practical Costas loop design, RF design, (January), 2002, pp.20.

M. Simon, W. Lindsey, Optimum Performance of Suppressed Carrier Receivers with Costas Loop Tracking, IEEE Trans. on Comm., (vol. 25, no. 2), 1977,pp. 215, https://doi.org/10.1109/TCOM.1977.1093805.

J. Mark Steber, PSK Demodulation (Part 1), Watkins-Johnson Company Tech-notes (Vol. 11 No. 2), 1984, pp.1.

Gary Breed, Analyzing Signals Using the Eye Diagram, High Frequency Electronics, (November), 2005, pp.50.

Agilent Technologies, 71501D Eye-Diagram Analysis User’s Guide, pp.1.

Anritsu Corporation, Understanding Eye Pattern Measurements, Anritsu Application

Note, 2010, pp.1.

Arvizu-Mondragón, A., Mendieta-Jiménez, F.J., & Sánchez-López, J. de D., Estimadores de fase óptica en sistemas modernos de comunicaciones Homodinas Ing. invest. y tecnol., (10(3)), 2009, pp.187.

Downloads

Published

2021-07-15

How to Cite

[1]
E. A. Dominguez Ratamoza, A. Arvizu Mondragón, F. Rojas Iñiguez, F. J. Mendieta Jiménez, and J. Santos Aguilar, “Detección intradina en comunicaciones ópticas con modulación de fase binaria empleando un lazo de Costas en el dominio del procesamiento digital de señales”, Rev. Mex. Fís., vol. 67, no. 2 Mar-Apr, pp. 238–248, Jul. 2021.