Structural and thermodynamic properties for the BaMn(Fe=V)F7 Fluoride glass system by using the Hybrid Reverse Monte Carlo simulation

Authors

  • Sidi Mohammed Mesli ECOLE SUPERIEURES EN SCIENCES APPLIQUEES- TLEMCEN- ALGERIE http://orcid.org/0000-0003-4479-8790
  • S. Heddar Université Abou BekrBelkaid
  • M. Habchi Université Abou BekrBelkaid
  • M. Kotbi Université Abou BekrBelkaid
  • M. Ziane Université Hassen

DOI:

https://doi.org/10.31349/RevMexFis.67.061001

Keywords:

Reverse Monte Carlo (RMC), Hybrid Reverse Monte Carlo (HRMC), partial pair distribution functions (PDFs), Buckingham potential, running coordination number n(r), total energy.

Abstract

The Hybrid Reverse Monte Carlo (HRMC) simulation has been widely used as a very useful method for displaying the pair partial distribution functions (PDFs) g(r) eliminating as soon as possible the artificial satellite peaks appear by the RMC simulation. The HRMC is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in the acceptance criteria.
The glass retains the structure presented by the liquid at the glass transition temperature Tg, and the thermodynamic properties are influenced by these structural modifications. We are interested in this study to apply the structural parameters g(r), obtained from HRMC simulation, to determine some structural and thermodynamic properties for the BaMn(Fe=V)F7 Fluoride glass.
The calculated structural properties such as the running coordination number n(r) were in good agreement with coordination constraint. We suggest also that the structural parameters g(r) is a good tool to determine the thermodynamic properties as the energy of the system.

Author Biography

Sidi Mohammed Mesli, ECOLE SUPERIEURES EN SCIENCES APPLIQUEES- TLEMCEN- ALGERIE

DEPARTMENT OF PHYSICS

References

A. Le Bail, Reverse Monte Carlo and Rietveld modelling of BaMn(Fe,V)F7 glass structures from neutron data, in Proceedings of the Conference on Non-Crystalline Inorganic Materials, Bonn, 2003

A. de KOZAK,M. Samouel, Rev. Chim. Miner. 15, 268-406(1978).

H. Holler, D. Babel, M. Samouel and A. de Kozak, J. Solid. State. Chem. 39, 345-350 (1981).

S. M. Mesli, M. Habchi, M. Kotbi, H. Xu. Condens. Matter. Phys. 16, 1-8 (2013).

S. M. Mesli, M. Habchi, R. Benallal, M. Kotbi, J.O.A.M. 17, 1391-1396 (2015).

M. Habchi, S. M. Mesli, M.Ziane, M. Kotbi, Revista Mexicana de Fisica. 66, 3, (2020). https://doi.org/10.31349/RevMexFis.66.258.

C.A. Angell, J.M. Sare, E.J. Sare, Glass transition temperatures for simple molecular liquids and their binary solutions, J. Phys. Chem. 82, 2622 (1978).

H.P. Dette, T. Koop, Glass formation processes in mixed inorganic/organic aerosol particles, J. Phys. Chem. A. 119,4552 (2015).

H. Jabraoui, E.M. Achhal , A. Hasnaoui , J.-L. Garden , Y. Vaills , S. Ouaskit Journal of Non-Crystalline Solids. 448, 16-26 (2016).

M. Kotbi, H. Xu, M.Habchi, Z. Dembahri, Phys. Lett. A. 315, 463 (2003).

J. Pikunic, C. Clinard, N. Cohaut, K .E .Gubbins, J. M. Guet, R. J.-M. Pellenq,I. Rannou, J. N. Rouzaud, Langmuir .19,8565 (2003).

G. Opletal, T. C. Petersen, B. O Malley, I. K. Snook, D. G. Mc Culloch, I. Yarovsky, Comput. Phys. Commun. 178, 777 (2008).

G. Opletal, T. C. Petersen, D. G. Mc Culloch, I. K. Snook, I. Yarovsky, J. Phys. Condens. Matter. 17,260 (2005).

M. Habchi, S.M. Mesli, M. Kotbi, H. Xu, Eur. Phys. J. B. 85, 255 (2012).

R. L. Mc Greevy, J. Phys. Condens. Matter. 13,R877 (2001).

W. M. Bartczak, J. Kroh, M. Zapalowski, K. Pernal, Phi-los. Trans. R. Soc. London. 359, 1785 (2001).

R. L. Mc Greevy, L. Pusztai, Mol. Simul. 1, 359 (1988).

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. Chem 21 (1959) 1087. https://doi.org/10.1063/1.1699114.

S. Gruenhut, MacFarlane, R. Douglas, J. Non-Cryst. Solids. 184, 356-362 (1995).

S.Gruenhut., M. Amini, MacFarlane, R Douglas, P Meakin, J. Non-Crys. Solids. 213, 398 (1997).

M. D. Johnson, P. Hutchinson, N. H. March, Proc.Roy.Soc,282 A, 283,(1964).

A. A. Kahn, Radial Distribution Functions of Fluid Argon, Phys. Rev, 134A (1964) 367. https://doi.org/10. 1103/PhysRev.134.B1151.

Downloads

Published

2021-11-01