Transistores de película delgada basados en óxido de Zinc por spray pyrolysis ultrasónico de alta frecuencia a baja temperatura

Authors

  • Ovier Obregon Benemerita Universidad Autonoma de Puebla
  • Pedro Rosales INAOE
  • Jose Luna Benemerita Universidad Autonoma de Puebla
  • Miguel Angel Dominguez Jimenez Benemerita Universidad Autonoma de Puebla

DOI:

https://doi.org/10.31349/RevMexFis.67.041003

Keywords:

Transistores de pelicula delgada, Oxido de Zinc, spray pyrolysis ultrasónico, Spin-on Glass

Abstract

In this work, the fabrication of zinc oxide thin film transistors (ZnO TFTs) on plastic substrates by High-frequency Ultrasonic Spray Pyrolysis
at Low Temperature is presented. The maximum fabrication temperature was 200±C. Spin-on glass was used as gate insulator. Polyethylene
terephthalate is used as plastic substrate. The ZnO TFTs exhibit an electron mobility of 1.25 cm2/Vs and a threshold voltage of 10.5 V,
while the on/off current ratio was of 104. In addition, the trap density in active layer and at the insulator/semiconductor interface is extracted.
Moreover, Metal-Insulator-Metal capacitors were fabricated on plastic and characterized in order to evaluate the gate insulator

References

Hussain, A. M., & Hussain, M. M. CMOS‐technology‐enabled flexible and stretchable electronics for internet of everything applications. Advanced Materials, 28(22), (2016). 4219. DOI: 10.1002/adma.201504236

Martins, R. F., Ahnood, A., Correia, N., Pereira, L. M., Barros, R., Barquinha, P. M., & Fortunato, E. E. Recyclable, flexible, low‐power oxide electronics. Advanced Functional Materials, 23(17), (2013), 2153. DOI: 10.1002/adfm.201202907

Chen, Y., Zhang, Y., Liang, Z., Cao, Y., Han, Z., & Feng, X. Flexible inorganic bioelectronics. npj Flexible Electronics, 4(1), (2020), 1. DOI: 10.1038/s41528-020-0065-1

Park, S., Park, H., Seong, S., & Chung, Y. Multilayer Substrate to Use Brittle Materials in Flexible Electronics. Sci Rep 10, (2020). 7660. DOI: 10.1038/s41598-020-64057-6

Seo, J. S., Jeon, J. H., Hwang, Y. H., Park, H., Ryu, M., Park, S. H. K., & Bae, B. S.Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic Film at Low Temperature. Sci Rep 3, (2013). 2085. DOI: 10.1038/srep02085

Omprakash, S. S., and S. K. Naveen Kumar. "Solution-Processed Amorphous Zinc Oxide Thin Film Transistor Based NAND Gate." JPhCS 1455.1 (2020): 012023. DOI: 10.1088%2F1742-6596%2F1455%2F1%2F012023

Masuda, Satoshi, "Transparent thin film transistors using ZnO as an active channel layer and their electrical properties." Journal of Applied Physics 93.3 (2003): 1624-1630. DOI: 10.1063/1.1534627

Fortunato, Elvira, Pedro Barquinha, and Rodrigo Martins. "Oxide semiconductor thin‐film transistors: a review of recent advances." Advanced materials 24.22 (2012): 2945-2986. DOI: 10.1002/adma.201103228

Cheng, Hua-Chi, Chia-Fu Chen, and Cheng-Chung Lee. "Thin-film transistors with active layers of zinc oxide (ZnO) fabricated by low-temperature chemical bath method." Thin Solid Films 498.1-2 (2006): 142-145. DOI: 10.1016/j.tsf.2005.07.101

Lee, Youngjin, Hagbong Kim, and Yongrae Roh. "Deposition of ZnO thin films by the ultrasonic spray pyrolysis technique." Japanese Journal of Applied Physics 40.4R (2001): 2423. DOI: 10.1143%2Fjjap.40.2423

Janotti, Anderson, and Chris G. Van de Walle. "Fundamentals of zinc oxide as a semiconductor." Reports on progress in physics 72.12 (2009): 126501. DOI:10.1088%2F0034-4885%2F72%2F12%2F126501

Perednis, Dainius, and Ludwig J. Gauckler. "Thin film deposition using spray pyrolysis." Journal of electroceramics 14.2 (2005): 103-111. DOI: 10.1007/s10832-005-0870-x

Purica, M., Budianu, E., Rusu, E., Danila, M. A., & Gavrila, R. "Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)." Thin Solid Films 403 (2002): 485-488. DOI: 10.1016/S0040-6090(01)01544-9

Craciun, V., Elders, J., Gardeniers, A. J., & Boyd, I. W. "Characteristics of high quality ZnO thin films deposited by pulsed laser deposition." Applied physics letters 65.23 (1994): 2963-2965. DOI: 10.1063/1.112478

Xu, Sheng, and Zhong Lin Wang. "One-dimensional ZnO nanostructures: solution growth and functional properties." Nano Research 4.11 (2011): 1013-1098. DOI: 10.1007/s12274-011-0160-7

Rajan, Raghavachari, and Aniruddha B. Pandit. "Correlations to predict droplet size in ultrasonic atomisation." Ultrasonics 39.4 (2001): 235-255. DOI: 10.1016/S0041-624X(01)00054-3

Kim, Y. H., Heo, J. S., Kim, T. H., Park, S., Yoon, M. H., Kim, J., & Park, S. K."Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films." Nature 489.7414 (2012): 128-132. DOI: 10.1038/nature11434

Gledhill, S., Grimm, A., Allsop, N., Koehler, T., Camus, C., Lux-Steiner, M., & Fischer, C. H. "A spray pyrolysis route to the undoped ZnO layer of Cu (In, Ga)(S, Se) 2 solar cells." Thin Solid Films 517.7 (2009): 2309-2311. DOI: 10.1016/j.tsf.2008.10.110

Myny, K. (2018). The development of flexible integrated circuits based on thin-film transistors. Nature electronics, 1(1), 30-39. DOI: 10.1038/s41928-017-0008-6

Lei, T., Shao, L. L., Zheng, Y. Q., Pitner, G., Fang, G., Zhu, C. & Cheng, K. T. "Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes." Nature communications 10.1 (2019): 1-10. DOI: 10.1038/s41467-019-10145-9

Fukuda, K., Takeda, Y., Yoshimura, Y., Shiwaku, R., Tran, L. T., Sekine, T. & Tokito, S. "Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films." Nature communications 5.1 (2014): 1-8. DOI: 10.1038/ncomms5147

Waldrip, M., Iqbal, H. F., Wadsworth, A., McCulloch, I., & Jurchescu, O. D. "Organic thin-film transistors with flame-annealed contacts." Flexible and Printed Electronics 5.1 (2020): 014015. DOI: 10.1088%2F2058-8585%2Fab76e1

Cheng, W., Liang, R., Hua, Q., Zhuo, Z., Chen, W., Zhang, S., ... & Xu, J."A novel steep slope hybrid InGaZnO TFT with negative DIBL improvement based on the Ag/HfO2 threshold switching device." Applied Physics Express 12.9 (2019): 091002. DOI: 10.7567%2F1882-0786%2Fab389

Scriven, L. E. "Physics and applications of dip coating and spin coating." MRS Online Proceedings Library Archive 121 (1988). DOI: 10.1557/PROC-121-717

Norrman, K., A. Ghanbari-Siahkali, and N. B. Larsen. "6 Studies of spin-coated polymer films." Annual Reports Section" C"(Physical Chemistry) 101 (2005): 174-201. DOI: 10.1039/B408857N

Chen, B. T. "Investigation of the solvent‐evaporation effect on spin coating of thin films." Polymer Engineering & Science 23.7 (1983): 399-403. DOI: 10.1002/pen.760230706

Adamopoulos, George, "Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin‐film transistors." Advanced functional materials 21.3 (2011): 525-531. DOI: 10.1002/adfm.201001089

Dominguez, Miguel A., and Abdu Orduña-Diaz. "Fully solution-processed zinc oxide MIS capacitors by ultrasonic spray pyrolysis in air ambient." Journal of applied research and technology 15.3 (2017): 278-282. DOI: 10.1016/j.jart.2017.01.015

Shinde, S. D., Patil, G. E., Kajale, D. D., Gaikwad, V. B., & Jain, G. H. "Synthesis of ZnO nanorods by spray pyrolysis for H2S gas sensor." Journal of Alloys and Compounds 528 (2012): 109-114. DOI: 10.1016/j.jallcom.2012.03.020

Ayouchi, R., Leinen, D., Martın, F., Gabas, M., Dalchiele, E., & Ramos-Barrado, J. R. "Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis." Thin solid films 426.1-2 (2003): 68-77. DOI: 10.1016/S0040-6090(02)01331-7

Bian, J. M., Li, X. M., Zhang, C. Y., Chen, L. D., & Yao, Q. "Synthesis and characterization of two-layer-structured ZnO pn homojunctions by ultrasonic spray pyrolysis." Applied physics letters 84.19 (2004): 3783-3785. DOI: 10.1063/1.1739280

Adamopoulos, G., Bashir, A., Gillin, W. P., Georgakopoulos, S., Shkunov, M., Baklar, M. A., ... & Anthopoulos, T. D. "Structural and electrical characterization of ZnO films grown by spray pyrolysis and their application in thin‐film transistors." Advanced functional materials 21.3 (2011): 525-531. DOI: 10.1002/adfm.201001089

Tsai, S. C., Song, Y. L., Tsai, C. S., Yang, C. C., Chiu, W. Y., & Lin, H. M "Ultrasonic spray pyrolysis for nanoparticles synthesis." Journal of materials science 39.11 (2004): 3647-3657. DOI: 10.1023/B:JMSC.0000030718.76690.11

Fritz, Sandra E., Tommie Wilson Kelley, and C. Daniel Frisbie. "Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer." The Journal of Physical Chemistry B 109.21 (2005): 10574-10577. DOI: 10.1021/jp044318f

Patil, Pramod S. "Versatility of chemical spray pyrolysis technique." Materials Chemistry and physics 59.3 (1999): 185-198. DOI: 10.1016/S0254-0584(99)00049-8

Perednis, Dainius, and Ludwig J. Gauckler. "Thin film deposition using spray pyrolysis." Journal of electroceramics 14.2 (2005): 103-111. DOI: 10.1007/s10832-005-0870-x

Ortel, Marlis, Yulia Sergeeva Trostyanskaya, and Veit Wagner. "Spray pyrolysis of ZnO–TFTs utilizing a perfume atomizer." Solid-state electronics 86 (2013): 22-26. DOI: 10.1016/j.sse.2013.04.003

Ortel, Marlis, and Veit Wagner. "Leidenfrost temperature related CVD-like growth mechanism in ZnO-TFTs deposited by pulsed spray pyrolysis." Journal of crystal growth 363 (2013): 185-189. DOI: 10.1016/j.jcrysgro.2012.10.043

Saha, Jewel Kumer, Jewel Kumer Saha, Ravindra Naik Bukke, Narendra Naik Mude & Jin Jang "Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors." Scientific Reports 10.1 (2020): 1-11. "Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors." Scientific Reports 10.1 (2020): 1-11. DOI: 10.1038/s41598-020-65938-6

Hu, H., Zhu, C., Lu, Y. F., Li, M. F., Cho, B. J., & Choi, W. K. "A high performance MIM capacitor using HfO 2 dielectrics." IEEE Electron Device Letters 23.9 (2002): 514-516. DOI: 10.1109/LED.2002.802602

Hsu, Hsiao-Hsuan, Chun-Yen Chang, and Chun-Hu Cheng. "A Flexible IGZO Thin-Film Transistor With Stacked TIO2-Based Dielectrics Fabricated at Room Temperature." IEEE Electron Device Letters 34.6 (2013): 768-770. DOI: 10.1109/LED.2013.2258455

Chakraborty, S., Bera, M. K., Dalapati, G. K., Paramanik, D., Varma, S., Bose, P. K., ... & Maiti, C. K. "Leakage current characteristics and the energy band diagram of Al/ZrO2/Si0. 3Ge0. 7 hetero-MIS structures." Semiconductor science and technology 21.4 (2006): 467. DOI: 10.1088%2F0268-1242%2F21%2F4%2F009

Lu, Q., Park, D., Kalnitsky, A., Chang, C., Cheng, C. C., Tay, S. P., ... & Hu, C. "Leakage current comparison between ultra-thin Ta 2 O 5 films and conventional gate dielectrics." IEEE Electron Device Letters 19.9 (1998): 341-342. DOI: 10.1109/55.709635

Wilk, G. D., and R. M. Wallace. "Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon." Applied Physics Letters 74.19 (1999): 2854-2856. DOI: 10.1063/1.124036

Lee, Hyun Jung, Andrei Sazonov, and Arokia Nathan. "Leakage current mechanisms in top-gate nanocrystalline silicon thin film transistors." Applied Physics Letters 92.8 (2008): 083509. DOI: 10.1063/1.2887882

Su, N. C., Shui-Jinn Wang, and Albert Chin. "High-performance InGaZnO thin-film transistors using HfLaO gate dielectric." IEEE Electron Device Letters 30.12 (2009): 1317-1319. DOI: 10.1109/LED.2009.2033392

Dominguez, Miguel A., Jose Luis Pau, and Andrés Redondo-Cubero. "Flexible zinc nitride thin-film transistors using spin-on glass as gate insulator." IEEE Transactions on Electron Devices 65.3 (2018): 1014-1017. DOI: 10.1109/TED.2018.2797254

Dominguez, M. A., Luna-Lopez, J. A., Moreno, M., Orduña, A., Garcia, M., Alcantara, S., & Soto, S. "Solution-processed transparent dielectric based on spin-on glass for electronic devices." Revista mexicana de física 62.3 (2016): 282-284. https://www.redalyc.org/comocitar.oa?id=57045452016

Dominguez, M. A., Pau, J. L., Gómez-Castaño, M., Luna-Lopez, J. A., & Rosales, P. "High mobility thin film transistors based on zinc nitride deposited at room temperature." Thin Solid Films 619 (2016): 261-264. DOI: 10.1016/j.tsf.2016.10.053

Wager, John F. "Transfer‐curve assessment of oxide thin‐film transistors." Journal of the Society for Information Display 18.10 (2010): 749-752. DOI: 10.1889/JSID18.10.749

Maeda, Keiji, Hiroki Koyanagi, and Toshihide Jinnai. "Subthreshold characteristics and interface state density of a-Si: H TFT." MRS Online Proceedings Library Archive 297 (1993). DOI: 10.1557/PROC-297-889

Lee, K., Oh, M. S., Mun, S. J., Lee, K. H., Ha, T. W., Kim, J. H., & Im, S. ("Interfacial Trap Density‐of‐States in Pentacene‐and ZnO‐Based Thin‐Film Transistors Measured via Novel Photo‐excited Charge‐Collection Spectroscopy." Advanced Materials 22.30 (2010): 3260-3265. DOI: 10.1002/adma.201000722

Kimura, M., Furuta, M., Kamada, Y., Hiramatsu, T., Matsuda, T., Furuta, H., ... & Hirao, T. "Extraction of trap densities in ZnO thin-film transistors and dependence on oxygen partial pressure during sputtering of ZnO films." IEEE transactions on electron devices 58.9 (2011): 3018-3024. DOI: 10.1109/TED.2011.2158546

Park, J. W., Lee, D., Kwon, H., & Yoo, S. "Improvement of On–Off-Current Ratio in TiOx Active-Channel TFTs Using N2O Plasma Treatment." IEEE electron device letters 30.4 (2009): 362-364. DOI: 10.1109/LED.2009.2013647

Jun, J. H., Park, B., Cho, K., & Kim, S. "Flexible TFTs based on solution-processed ZnO nanoparticles." Nanotechnology 20.50 (2009): 505201. DOI: 10.1088%2F0957-4484%2F20%2F50%2F505201

Li, C. S., Li, Y. N., Wu, Y. L., Ong, B. S., & Loutfy, R. O. (2008). Performance improvement for solution-processed high-mobility ZnO thin-film transistors. Journal of Physics D: Applied Physics, 41(12), 125102. DOI: 10.1088%2F0022-3727%2F41%2F12%2F125102

Manoj Kumara, Sachin Otarib, Hakyung Jeonga, Dongjin Lee. "Solution-processed highly efficient Au nanoparticles and their reduced graphene oxide nanocomposites as charge trapping media for ZnO thin film transistor nonvolatile memory." Journal of Alloys and Compounds 725 (2017): 1115-1122. DOI: 10.1016/j.jallcom.2017.07.185

Schroder, Dieter K. Semiconductor material and device characterization. John Wiley & Sons, 2015.

Ortiz-Conde, A., Sánchez, F. G., Liou, J. J., Cerdeira, A., Estrada, M., & Yue, Y. "A review of recent MOSFET threshold voltage extraction methods." Microelectronics reliability 42.4-5 (2002): 583-596. DOI: 10.1016/S0026-2714(02)00027-6

Dominguez, Miguel, Pedro Rosales, and Alfonso Torres. "Performance improvement of low-temperature a-SiGe: H thin-film transistors." Solid-state electronics 76 (2012): 44-47. DOI: 10.1016/j.sse.2012.06.005

Ogo, Y., Hiramatsu, H., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. "p-channel thin-film transistor using p-type oxide semiconductor, SnO." Applied Physics Letters 93.3 (2008): 032113. DOI: 10.1063/1.2964197

Ohe, T., Kuribayashi, M., Yasuda, R., Tsuboi, A., Nomoto, K., Satori, K., & Kasahara, J. (“Solution-processed organic thin-film transistors with vertical nanophase separation." Applied Physics Letters 93.5 (2008): 286. DOI: 10.1063/1.2966350

Song Yun Cho, Young Hun Kang‚ Jun-Young Jung, So Youn Nam, Jongsun Lim‚ Sung Cheol Yoon, Dong Hoon Choi‚ and Changjin Lee. "Novel zinc oxide inks with zinc oxide nanoparticles for low-temperature, solution-processed thin-film transistors." Chemistry of Materials 24.18 (2012): 3517-3524. DOI: 10.1021/cm2036234

Vidor, F. F., Meyers, T., Wirth, G. I., & Hilleringmann, U. "ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique." Microelectronic Engineering 159 (2016): 155-158. DOI: 10.1016/j.mee.2016.02.059

Ming-Dong, Y., Ling-Hai, X., Yu-Yu, L., Yan-Feng, D., & Jin-Ying, H. "Electrical characteristics of high-performance ZnO field-effect transistors prepared by ultrasonic spray pyrolysis technique." Chinese Physics Letters 28.1 (2011): 017302. DOI: 10.1088%2F0256-307x%2F28%2F1%2F017302

Powell, Martin J. "The physics of amorphous-silicon thin-film transistors." IEEE Transactions on Electron Devices 36.12 (1989): 2753-2763. DOI: 10.1109/16.40933

Richards, T. J., and H. Sirringhaus. "Analysis of the contact resistance in staggered, top-gate organic field-effect transistors." Journal of Applied Physics 102.9 (2007): 094510. DOI: 10.1063/1.2804288

Paritosh Karnatak, T. Phanindra Sai, Srijit Goswami, Subhamoy Ghatak, Sanjeev Kaushal & Arindam Ghosh "Current crowding mediated large contact noise in graphene field-effect transistors." Nature communications 7.1 (2016): 1-8. DOI: 10.1038/ncomms13703

Chiang, C. S., Martin, S., Kanicki, J., Ugai, Y., Yukawa, T., & Takeuchi, S. ("Top-gate staggered amorphous silicon thin-film transistors: Series resistance and nitride thickness effects." Japanese journal of applied physics 37.11R (1998): 5914. DOI: 10.1143/Fjjap.37.5914

Dominguez, M. A., Flores, F., Martinez, J., & Orduña-Diaz, A. "Impact of active layer thickness in thin-film transistors based on zinc oxide by ultrasonic spray pyrolysis." Solid-State Electronics 109 (2015): 33-36. DOI: 10.1016/j.sse.2015.03.012

Dominguez, Miguel A., et al. "Effects of low-temperature annealing on electrical properties of Thin-film Transistors based on Zinc Oxide films deposited by ultrasonic spray pyrolysis: Impact of annealing time." Thin Solid Films 615 (2016): 243-246. DOI: 10.1016/j.tsf.2016.07.036

Cha, S. H., Oh, M. S., Lee, K. H., Im, S., Lee, B. H., & Sung, M. "Electrically stable low voltage ZnO transistors with organic/inorganic nanohybrid dielectrics." Applied Physics Letters 92.2 (2008): 023506. DOI: 10.1063/1.2827588

Lin, Y. H., Faber, H., Zhao, K., Wang, Q., Amassian, A., McLachlan, M., & Anthopoulos, T. D. "High‐performance ZnO transistors processed via an aqueous carbon‐free metal oxide precursor route at temperatures between 80–180 C." Advanced Materials 25.31 (2013): 4340-4346. DOI: 10.1002/adma.201301622

Downloads

Published

2021-07-02