Ultrafast dynamics of carriers and phonons of photoinjected double-plasma in aluminium nitride
DOI:
https://doi.org/10.31349/RevMexFis.67.318Keywords:
aluminium nitride, plasma semiconductor, photoinjected semiconductorAbstract
Aluminum nitride is attracting great interest of the industry and scientific community due to its interesting properties. In this paper is performed a theoretical study on the ultrafast transient transport properties of photoinjected carriers in wurtzite AlN subjected to electric fields up to 80 kV/cm. For this, the Nonequilibrium Statistical Operator Method was used. The evolution towards the steady state of drift velocity of carriers (electrons and holes) and nonequilibrium temperature (carriers and phonons) subpicosecond scale were determined.
References
bibitem{1} Y.G. Cao, X. L. Chen, J.Y. Li, YP. Xu, T. Xu, Q. L.
Liu, and J.K. Liang, Blue emission and Raman scattering spectrum
from AlN nanocrystalline powders, emph{J. Cryst. Growth}
textbf{213} (2000) 198-202.
https://doi.org/10.1016/S0022-0248(00)00379-1
bibitem{2} S.C. Jain, M. Willander, J. Narayan, and R. Overstraeten, III–nitrides: Growth, characterization, and properties, emph{J. Appl. Phys.} textbf{87} (2000) 965.
https://doi.org/10.1063/1.371971
bibitem{3} M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur,
emph{Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe} (Wiley, New York, 2001).
bibitem{4} A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, Indium nitride (InN): A review on growth, characterization, and properties, emph{J. Appl. Phys.} textbf{94} (2003) 2779. https://doi.org/10.1063/1.1595135
bibitem{5} M.S. Shur and R.F. Davis, emph{GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance} (World Scientific, River Edge, 2004).
bibitem{6} M. Iwata, K. Adachi, S. Furukawa, and T. Amakawa, Synthesis of purified AlN nano powder by transferred type arc plasma, emph{J. Phys. D Appl. Phys.} textbf{37} (2004) 1041.
https://doi.org/10.1088/0022-3727/37/7/014
bibitem{7} Y. Taniyasu, M. Kasu, and T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,
emph{Nature} textbf{441} (2006) 325-328.
https://doi.org/10.1038/nature04760
bibitem{8} Y. Taniyasu and M. Kasu, Aluminum nitride deep-ultraviolet light-emitting p–n junction diodes, emph{Diam. Relat. Mater.} textbf{17} (2008) 1273-1277.
https://doi.org/10.1016/j.diamond.2008.02.042
bibitem{9} J. Wu, When group-III nitrides go infrared: New properties and perspectives, emph{J. Appl. Phys.} textbf{106} (2009) 011101. https://doi.org/10.1063/1.3155798
bibitem{10} S.J. Pearton, C.R. Abernathy, and F. Ren, emph{Gallium Nitride Processing for Electronics, Sensors and Spintronics} (Springer, New York, 2010).
bibitem{11} N.S. Kanhe, A.B. Nawale, R.L. Gawade, V.G. Puranik, S.V. Bhoraskar, A.K. Das, and V.L. Mathe, Understanding the growth of micro and nano-crystalline AlN by thermal plasma process, emph{J. Cryst. Growth} textbf{339} (2012) 36--45.
https://doi.org/10.1016/j.jcrysgro.2011.11.011
bibitem{12} R.R. Sumathi, Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds, emph{Cryst. Eng. Comm.} textbf{15} (2013) 2232-2240.
https://doi.org/10.1039/C2CE26599K
bibitem{13} E.A. Jones, F. Wang, and D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges, emph{IEEE J. Emerg. Sel. Topics Power Electron.} textbf{4} (2016) 707-719. https://doi.org/10.1109/JESTPE.2016.2582685
bibitem{14} G. Meneghesso, M. Meneghini, I. Rossetto, D. Bisi, S. Stoffels, M. Van Hove, S. Decoutere, and E. Zanoni, Reliability and parasitic issues in GaN-based power HEMTs: a review, emph{Semicond. Sci. Technol.} textbf{31} (2016) 093004.
https://doi.org/10.1088/0268-1242/31/9/093004
bibitem{15} H. Wu and R. Zheng, Single Crystal AlN: Growth by Modified Physical Vapor Transport and Properties, In: emph{III-Nitride Materials, Devices and Nano-Structures}, edited By: Zhe Chuan Feng (World Scientific Publishing, Singapore, 2017), pp. 151--182. https://doi.org/10.1142/9781786343192_0005
bibitem{16} J. Zagoraca, D. Zagoraca, D. Jovanovi'{c}, J. Lukovi'{c}, and B. Matovi'{c}, Ab initio investigations of structural, electronic and mechanical properties of aluminum nitride at standard and elevated pressures, emph{J. Phys. Chem. Solid.} textbf{122} (2018) 94-103. https://doi.org/10.1016/j.jpcs.2018.06.020
bibitem{17} D.M. Spiridonov, I.A. Weinstein, D.V. Chaikin, A.S. Vokhmintsev, Yu. D. Afonin, and A.V. Chukin, Spectrally resolved
thermoluminescence in electron irradiated AlN submicrocrystals,
emph{Radiation Measurements} textbf{122} (2019) 91--96.
https://doi.org/10.1016/j.radmeas.2019.02.001
bibitem{18} K. Teker, Dielectrophoretic Assembly of Aluminum Nitride (AlN) Single Nanowire Deep Ultraviolet Photodetector, emph{J. Nano Research} textbf{60} (2019) 86-93.
https://doi.org/10.4028/www.scientific.net/JNanoR.60.86
bibitem{19} H. Wei, P. Qiu, M. Peng, Q. Wu, S. Liu, Y. An, Y. He, Y. Song, and X. Zheng, Interface modification for high-efficient quantum dot sensitized solar cells using ultrathin aluminum nitride coating, emph{Appl. Surf. Sci.} textbf{476} (2019) 608--614.
https://doi.org/10.1016/j.apsusc.2019.01.144
bibitem{20} Z. Ren, Y. Lu, H.H. Yao, H. Sun, C.H. Liao, J. Dai, C. Chen, J.H. Ryou, J. Yan, J. Wang, J. Li, and X. Li, III-nitride Deep UV LED without Electron Blocking Layer, emph{IEEE Photonics Journal} textbf{11} (2019) 8200511.
https://doi.org/10.1109/JPHOT.2019.2902125
bibitem{21} N. Alfaraj, J.W. Min, C.H. Kang, A.A. Alatawi, D. Priante, R.C. Subedi, M. Tangi, T.K. Ng, and B.S. Ooi, Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials, emph{J. Semicond.} textbf{40} (2019) 121801. https://doi.org/10.1088/1674-4926/40/12/121801.
bibitem{22} R. Lin, W. Zheng, L. Chen, Y. Zhu, M. Xu, X. Ouyang, and F. Huang, X-ray radiation excited ultralong ($>$20,000 seconds) intrinsic phosphorescence in aluminum nitride single-crystal scintillators, emph{Nature Communications} textbf{11} (2020) 4351. https://doi.org/10.1038/s41467-020-18221-1
bibitem{23} B. Choudhuri and A. Mondal, Group III-Nitrides and Other Semiconductors for Terahertz Detector. In: emph{Emerging Trends in Terahertz Solid-State Physics and Devices}, edited by A. Biswas, A. Banerjee, A. Acharyya, H. Inokawa and J. Roy (Springer, Singapore, 2020). http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-981-15-3235-1_12
bibitem{24} D.Y. Xing and C.S. Ting, Green's-function approach to transient hot-electron transport in semiconductors under a uniform electric field, emph{Phys. Rev. B} textbf{35} (1987) 3971.
https://doi.org/10.1103/PhysRevB.35.3971
bibitem{25} N. Ma, X. Q. Wang, S.T. Liu, G. Chen, J.H. Pan, L. Feng, F.J. Xu, N. Tang, and B. Shen, Hole mobility in wurtzite InN, emph{Appl. Phys. Lett.} textbf{98} (2011) 192114.
https://doi.org/10.1063/1.3592257
bibitem{26} P. Siddiqua and S.K. O'Leary, Electron transport within the wurtzite and zinc-blende phases of gallium nitride and indium nitride, emph{J. Mater. Sci.: Mater. Electron.} textbf{29} (2018) 3511. https://doi.org/10.1007/s10854-017-8324-1
bibitem{27} L.F. Mao, Quantum coupling and electrothermal effects on electron transport in high-electron mobility transistors, emph{Pramana -- J. Phys.} textbf{93} (2019) 11.
https://doi.org/10.1007/s12043-019-1769-4
bibitem{28} T. Linn, K. Bittner, H.G. Brachtendorf, and C. Jungemann, Simulation of THz oscillations in semiconductor devices based on balance equations, emph{J. Sci. Comput.} textbf{85} (2020) 6. https://doi.org/10.1007/s10915-020-01311-z
bibitem{29} V. Stefano, An energy transport model describing electro-thermal transport in silicon carbide semiconductors, emph{J. Comput. Theor. Transport} textbf{46} (2017) 379--395.
https://doi.org/10.1080/23324309.2017.1352513
bibitem{30} S.M. Hong and J.H. Jang, Transient simulation of semiconductor devices using a deterministic Boltzmann equation solver, emph{IEEE J. Electron Devices Soc.} textbf{6} (2018) 156--163. https://doi.org/10.1109/JEDS.2017.2780837
bibitem{31} D.N. Zubarev, emph{Nonequilibrium Statistical
Thermodynamics} (Consultants Bureau, New York, 1974).
bibitem{32} D.N. Zubarev, V. Morozov, and G. R"{o}pke, emph{Statistical Mechanics of Nonequilibrium Processes}, Vols. 1 and 2 (Akademie Verlag Wiley VCH Publishing Group, Berlin, 1996 and 1997).
bibitem{33} R. Luzzi, A.R. Vasconcellos, and J.G. Ramos, emph{Predictive Statistical Mechanics: a Nonequilibrium Statististical Ensemble Formalism} (Kluwer Academics, Dordrecht, The Netherlands, 2002).
bibitem{34} R. Luzzi, A.R. Vasconcellos, and J.G. Ramos, emph{Statistical Foundations of Irreversible Thermodynamics} (Teubner-Bertelsmann Springer, Stuttgart, 2000).
bibitem{35} R. Luzzi, A.R. Vasconcellos, J.G. Ramos, and C.G.
Rodrigues, Statistical irreversible thermodynamics in the framework
of Zubarev's nonequilibrium statistical operator method,
emph{Theor. Math. Phys.} textbf{194} (2018) 4.
https://doi.org/10.1134/S0040577918010038
bibitem{36} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Optical properties of III-nitrides in electric fields, emph{Eur. Phys. J. B.} textbf{72} (2009) 67. https://doi.org/10.1140/epjb/e2009-00332-y
bibitem{37} C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, and V.N.
Freire, Urbach's tail in III-nitrides under an electric field,
emph{J. Appl. Phys.} textbf{90} (2001) 1879.
https://doi.org/10.1063/1.1384859
bibitem{38} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Non-Linear electron mobility in n-doped III-Nitrides, emph{Braz. J. Phys.} textbf{36} (2006) 255. http://www.sbfisica.org.br/bjp/files/v36_255.pdf
bibitem{39} C.G. Rodrigues, C.A.B. Silva, A.R. Vasconcellos, J.G,
Ramos, and R. Luzzi, The role of nonequilibrium thermo-mechanical statistics in modern technologies and industrial processes: an overview, emph{Braz. J. Phys.} textbf{40} (2010) 63. http://www.sbfisica.org.br/bjp/files/v40_63.pdf
bibitem{40} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Nonlinear hole transport and nonequilibrium thermodynamics in group III-nitrides under the influence of electric fields, emph{J. Appl. Phys.}
textbf{102} (2007) 073714. https://doi.org/10.1063/1.2785976
bibitem{41} C.G. Rodrigues, Electron mobility in n-doped zinc sulphide, emph{Microelectron. J.} textbf{37} (2006) 657.
https://doi.org/10.1016/j.mejo.2005.05.015
bibitem{42} C.G. Rodrigues, V.N. Freire, A.R. Vasconcellos, and R. Luzzi, Electron mobility in nitride materials, emph{Braz. J. Phys.}
textbf{32} (2002) 439--441.
http://www.sbfisica.org.br/bjp/files/v32_439.pdf
bibitem{43} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, A kinetic theory for nonlinear quantum transport, emph{Transp. Theory Stat. Phys.} textbf{29} (2000) 733. http://dx.doi.org/10.1080/00411450008200000
bibitem{44} L. Lauck, A.R. Vasconcellos, and R. Luzzi, A nonlinear quantum transport theory, emph{Physica A} textbf{168} (1990) 789--819. https://doi.org/10.1016/0378-4371(90)90031-M
bibitem{45} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Nonlinear transport in n-III-nitrides: Selective amplification and emission of coherent LO phonons, emph{Solid State Commun.} textbf{140} (2006) 135. https://doi.org/10.1016/j.ssc.2006.08.015
bibitem{46} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Evolution kinetics of nonequilibrium longitudinal-optical phonons generated by drifting electrons in III-nitrides: longitudinal-optical-phonon resonance, emph{J. Appl. Phys.} textbf{108} (2010) 033716. https://doi.org/10.1063/1.3462501
bibitem{47} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Drifting electron excitation of acoustic phonons: Cerenkov-like effect in n-GaN, emph{J. Appl. Phys.} textbf{113} (2013) 113701.
https://doi.org/10.1063/1.4795271
bibitem{48} C.G. Rodrigues, F.S. Vannucchi, and R. Luzzi, Non-equilibrium Bose-Einstein-like condensation, emph{Advanced Quantum Technologies} textbf{1} (2018) 201800023.
https://doi.org/10.1002/qute.201800023
bibitem{49} R.K. Chang, J.M. Ralston, and D.E. Keating, emph{Ligth Scattering Spectra of Solids I}, edited by G.B. Wright (Springer, New York, 1969), pp. 369--379.
bibitem{50} P. Siddiqua, W.A. Hadi, M.S. Shur, and S.K. O'Leary, A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and
retrospective review, emph{J. Mater. Sci.: Mater. Electron}
textbf{26} (2015) 4475.
bibitem{51} S. Wang, Z. Wu, Z. Haifeng, X. Duan, C. Han, Y. Wei, and H. Liu, Comparison the electron momentum and energy relaxation process in wurtzite GaN, InN and AlN by Monte Carlo method, emph{Solid State Commun.} textbf{288} (2019) 68--73.
https://doi.org/10.1016/j.ssc.2018.11.018
bibitem{52} H. Wu and R. Zheng, Single Crystal AlN: Growth by Modified Physical Vapor Transport and Properties, In: emph{III-Nitride Materials, Devices and Nano-Structures}, edited By: Z. C. Feng (World Scientific Publishing, Singapore, 2017), pp. 151--182.
https://doi.org/10.1142/9781786343192_0005
bibitem{53} S.K. O'Leary, P. Siddiqua, W.A. Hadi, B.E. Foutz, M.S. Shur, and L.F. Eastman, Electron Transport Within III-V Nitride
Semiconductors, In: emph{Springer Handbook of Electronic and
Photonic Materials} (Part D: Materials for Optoelectronics and
Photonics), edited by S. Kasap and P. Capper (Springer International Publishing, Berlin, 2017).
https://doi.org/10.1007/978-3-319-48933-9_32
bibitem{54} S.K. O'Leary, B.E. Foutz, M.S. Shur, and L.F. Eastman, Steady-State and Transient Electron Transport Within the III-V Nitride Semiconductors, GaN, AlN, and InN: A Review, emph{J. Mater. Sci.: Mater. Electron.} textbf{17} (2006) 87--126.
https://doi.org/10.1007/s10854-006-5624-2
bibitem{55} S. Contreras, L. Konczewicz, J.B. Messaoud, H. Peyre, M.A. Khalfioui, S. Matta, M. Leroux, B. Damilano, and J. Brault, High temperature electrical transport study of Si-doped AlN,
emph{Superlattice. Microst.} textbf{98} (2016) 253--258.
https://doi.org/10.1016/j.spmi.2016.08.038
bibitem{56} C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, and V.N.
Freire, Transient transport in III-nitrides: interplay of momentum
and energy relaxation times, emph{J. Phys-Condens. Mat.}
textbf{19} (2007) 346214.
https://doi.org/10.1088/0953-8984/19/34/346214
bibitem{57} H. Arabshahi, M. Izadifard, and A. Karimi, Calculation of elecron mobility in WZ-AlN and ZB-AlN at low electric field,
emph{International Journal of Science, Environment and Technology} textbf{1} (2012) 395-401. https://doi.org/10.15580/GJSETR.2012.3.10031275
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Clóves Gonçalves Rodrigues, Roberto Luzzi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.