Thermodynamics of viscous dark energy for the late future time universe

Authors

  • David Alejandro Tamayo Ramírez Mesoamerican Centre for Theoretical Physics/Universidad Autónoma de Chiapas

DOI:

https://doi.org/10.31349/RevMexFis.68.020704

Keywords:

Dark Energy, Thermodynamics, Bulk Viscosity

Abstract

In this work we explore the thermodynamic aspects of dark energy for late future time universe in two different scenarios: as a perfect fluid with constant and variable equation of state parameter; and as dissipative fluid described by a barotropic equation of state with bulk viscosity in the framework of the Eckart theory and the full Israel-Stewart theory.
We explore cosmological solutions for a flat, homogeneous and isotropic universe; and we assume the late future time behavior when the dark energy dominates the cosmic evolution.
When modeled as a perfect fluid with a dynamical equation of state, $p=w(a)\rho$, the dark energy has an energy density, temperature and entropy well defined and an interesting result is that there is no entropy production even though been dynamical.
For dissipative dark energy, in the Eckart theory two cases are studied: $\xi=const.$ and $\xi =(\beta/\sqrt{3}) \rho^{1/2}$; it is found that the entropy grows exponentially for the first case and as a power-law for the second.
In the Israel-Stewart theory we consider a $\xi =\xi_0 \rho^{1/2}$ and a relaxation time $\tau = \xi/\rho$; an analytical Big Rip solution is obtained with a power-law entropy.
In all cases is obtained a power-law relation between temperature and energy density.
In order to maintain the second law of thermodynamics theoretical constraints for the equation of state are found in the different dark energy models studied.
A barotropic dark fluid with $w<-1$ is thermodynamically difficult to support, but the overall effect of bulk viscosity in certain cases allows a phantom regime without thermodynamic anomalies.

Author Biography

David Alejandro Tamayo Ramírez, Mesoamerican Centre for Theoretical Physics/Universidad Autónoma de Chiapas

In MCTP research iternship.
At UNACH subject professor at the Faculty of Sciences in Physics and Mathematics.

References

K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci. 342 (2012) 155, doi:10.1007/s10509-012-1181-8

D. Huterer and D. L. Shafer, Dark energy two decades after: Observables, probes, consistency tests, Rept. Prog. Phys. 81 (2018) 016901, doi:10.1088/1361-6633/aa997e

G. B. Zhao, M. Raveri, L. Pogosian, Y. Wang, R. G. Crittenden, W. J. Handley, W. J. Percival, F. Beutler, J. Brinkmann and C. H. Chuang, et al. Dynamical dark energy in light of the latest observations, Nature Astron.

(2017) 627, doi:10.1038/s41550-017-0216-z

Y. Wang, L. Pogosian, G. B. Zhao and A. Zucca, Evolution of dark energy reconstructed from the latest observations, Astrophys. J. Lett. 869 (2018) L8, doi:10.3847/2041-8213/aaf238

R. C. Duarte, E. M. Barboza, E. M. C. Abreu and J. A. Neto, The unphysical character of minimally coupled dark energy fluids, Eur. Phys. J. C 79 (2019) 356, doi:10.1140/epjc/s10052-019-6876-3

H. H. B. Silva, R. Silva, R. S. Gonçalves, Z. H. Zhu and J. S. Alcaniz, General treatment for dark energy thermodynamics, Phys. Rev. D 88 (2013) 127302, doi:10.1103/PhysRevD.88.127302

J. D. Barrow, String-Driven Inflationary and Deflationary Cosmological Models, Nucl. Phys. B 310 (1988) 743, doi:10.1016/0550-3213(88)90101-0

W. Zimdahl, D. J. Schwarz, A. B. Balakin and D. Pavon,

Cosmic anti-friction and accelerated expansion, Phys. Rev. D 64 (2001) 063501, doi:10.1103/PhysRevd.64.063501

A. B. Balakin, D. Pavon, D. J. Schwarz and W. Zimdahl, Curvature force and dark energy, New J. Phys. 5 (2003) 85, doi:10.1088/1367-2630/5/1/385

H. Velten, J. Wang and X. Meng, Phantom dark energy

as an effect of bulk viscosity, Phys. Rev. D 88 (2013)

, doi:10.1103/PhysRevD.88.123504

N. Cruz, S. Lepe and F. Peña, Crossing the phan-

tom divide with dissipative normal matter in the Is-

rael–Stewart formalism, Phys. Lett. B 767 (2017) 103,

doi:10.1016/j.physletb.2017.01.035

I. Brevik, E. Elizalde, S. Nojiri and S. D. Odintsov,

Viscous Little Rip Cosmology, Phys. Rev. D 84 (2011)

, doi:10.1103/PhysRevD.84.103508

C. Eckart, The Thermodynamics of Irreversible Pro-

cesses. 1. The Simple Fluid, Phys. Rev. 58 (1940) 267,

doi:10.1103/PhysRev.58.267

A. Avelino, Y. Leyva and L. A. Urena-Lopez, Interacting viscous dark fluids, Phys. Rev. D 88 (2013) 123004, doi:10.1103/PhysRevD.88.123004

A. Hernández-Almada, M. A. Garcı́a-Aspeitia, J. Magaña and V. Motta, Stability analysis and constraints on interacting viscous cosmology, Phys. Rev. D 101 (2020) 063516, doi:10.1103/PhysRevD.101.063516

I. H. Brevik and O. Gorbunova, Dark energy and viscous cosmology, Gen. Rel. Grav. 37 (2005) 2039, doi:10.1007/s10714-005-0178-9

I. Brevik, Viscosity-Induced Crossing of the Phantom Barrier, Entropy 17 (2015) 6318, doi:10.3390/e17096318

I. Brevik, Viscosity-Induced Crossing of the Phantom Divide in the Dark cosmic Fluid, Front. in Phys. 1 (2013) 27, doi:10.3389/fphy.2013.00027

R. Colistete, J. C. Fabris, J. Tossa and W. Zimdahl, Bulk Viscous Cosmology, Phys. Rev. D 76 (2007) 103516, doi:10.1103/PhysRevD.76.103516

A. Avelino and U. Nucamendi, Exploring a matter- dominated model with bulk viscosity to drive the accelerated expansion of the Universe, JCAP 08 (2010) 009, doi:10.1088/1475-7516/2010/08/009

H. Velten and D. J. Schwarz, Constraints on dissipative unified dark matter, JCAP 09 (2011) 016, doi:10.1088/1475-7516/2011/09/016

L. Herrera-Zamorano, M. A. Garcı́a-Aspeitia and A. Hernández-Almada, Constraints and cosmography of ΛCDM in presence of viscosity, Eur. Phys. J. C 80 (2020) 637, doi:10.1140/epjc/s10052-020-8225-y

W. Israel, Nonstationary irreversible thermodynamics: A Causal relativistic theory, Annals Phys. 100 (1976) 310, doi:10.1016/0003-4916(76)90064-6

W. Israel and J. M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys. 118 (1979) 341, doi:10.1016/0003-4916(79)90130-1

I. Brevik, Ø. Grøn, J. de Haro, S. D. Odintsov and E. N. Saridakis, Viscous Cosmology for Early- and Late-Time Universe, Int. J. Mod. Phys. D 26 (2017) 1730024, doi:10.1142/S0218271817300245

S. Lepe, G. Otalora and J. Saavedra, Dynamics of viscous cosmologies in the full Israel-Stewart formalism, Phys. Rev. D 96 (2017) 023536,

doi:10.1103/PhysRevD.96.023536

R. Maartens, Dissipative cosmology, Class. Quant. Grav. 12 (1995) 1455, doi:10.1088/0264-9381/12/6/011

R. Maartens, Causal thermodynamics in relativity, arXiv:astro-ph/9609119 [astro-ph].

M. Cruz, N. Cruz and S. Lepe, Phantom solution in a non-linear Israel–Stewart theory, Phys. Lett. B 769 (2017) 159, doi:10.1016/j.physletb.2017.03.065

M. Cruz, S. Lepe and S. D. Odintsov, Thermodynamically allowed phantom cosmology with viscous fluid, Phys. Rev. D 98 (2018) 083515, doi:10.1103/PhysRevD.98.083515

D. Wang, Y. J. Yan and X. H. Meng, Constraining viscous dark energy models with the latest cosmological data, Eur. Phys. J. C 77 (2017) 660, doi:10.1140/epjc/s10052-017-5212-z

W. Yang, S. Pan, E. Di Valentino, A. Paliathanasis and J. Lu, Challenging bulk viscous unified scenarios with cosmological observations, Phys. Rev. D 100 (2019) 103518, doi:10.1103/PhysRevD.100.103518

S. D. Odintsov, D. Saez-Chillon Gomez and G. S. Sharov, Testing the equation of state for viscous dark energy, Phys. Rev. D 101 (2020) 044010,

doi:10.1103/PhysRevD.101.044010

J. S. Gagnon and J. Lesgourgues, Dark goo: Bulk viscosity as an alternative to dark energy, JCAP 09 (2011 026, doi:10.1088/1475-7516/2011/09/026

E. N. Saridakis, P. F. Gonzalez-Diaz and C. L. Siguenza, Unified dark energy thermodynamics: varying w and the -1-crossing, Class. Quant. Grav. 26 (2009) 165003, doi:10.1088/0264-9381/26/16/165003

V. F. Cardone, N. Radicella and A. Troisi, A thermodynamic point of view on dark energy models, Entropy 19 (2017) 392, doi:10.3390/e19080392

N. Bilic, Thermodynamics of dark energy, Fortsch. Phys. 56 (2008) 363, doi:10.1002/prop.200710507

M. R. Setare and A. Sheykhi, Viscous dark energy and generalized second law of thermodynamics, Int. J. Mod. Phys. D 19 (2010) 1205, doi:10.1142/S0218271810017202

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, New approach to cosmological bulk viscosity, Phys. Rev. D 91 (2015) 043532, doi:10.1103/PhysRevD.91.043532

S. Maity, P. Bhandari and S. Chakraborty, Universe consisting of diffusive dark fluids: thermodynamics and stability analysis, Eur. Phys. J. C 79 (2019) 82, doi:10.1140/epjc/s10052-019-6603-0

M. R. Setare and A. Sheykhi, Thermodynamics of viscous dark energy in an RSII braneworld, Int. J. Mod. Phys. D 19 (2010) 171, doi:10.1142/S0218271810016361

K. Nozari, N. Behrouz and A. Sheykhi, Thermodynamics of Viscous Dark Energy in DGP Setup, Int. J. Theor. Phys. 52 (2013) 2351, doi:10.1007/s10773-013-1519-1

M. Cataldo, N. Cruz and S. Lepe, Viscous dark energy and phantom evolution, Phys. Lett. B 619 (2005) 5, doi:10.1016/j.physletb.2005.05.029

J. D. Barrow, The Deflationary Universe: An Instability of the De Sitter Universe, Phys. Lett. B 180 (1986) 335, doi:10.1016/0370-2693(86)91198-6

M. Cruz, N. Cruz and S. Lepe, Accelerated and decelerated expansion in a causal dissipative cosmology, Phys. Rev. D 96 (2017) 124020,

doi:10.1103/PhysRevD.96.124020

N. Cruz, A. Hernández-Almada and O. Cornejo-Pérez, Constraining a causal dissipative cosmological model, Phys. Rev. D 100 (2019) 083524,

doi:10.1103/PhysRevD.100.083524

Downloads

Published

2022-03-01

How to Cite

[1]
D. A. Tamayo Ramírez, “Thermodynamics of viscous dark energy for the late future time universe”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 020704 1–, Mar. 2022.

Issue

Section

07 Gravitation, Mathematical Physics and Field Theory