Prediction of electronic and optical properties for Zn1-xCdxSeyTe1-y quaternary alloys: First-principles study

Authors

DOI:

https://doi.org/10.31349.RevMexFis.67.041001

Keywords:

Quaternary alloys, Optical properties, Density functional theory, TB-mBJ.

Abstract

In the present work, the density functional theory (DFT) was performed for the investigation of the structural, electronic and optical properties of the Zn1-xCdxSeyTe1-y quaternary alloys using the full potential linearized augmented plane wave (FP-LAPW) method. For the calculations of the structural properties we have used the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA-PBEsol). On other hand, the electronic properties have been computed within the local density approximation (LDA) in adding to the Tran-Blaha modified Becker-Johnson (TB-mBJ) approach. Our results indicate that the lattice constant, as well as the bulk modulus and the energy gap for the Zn1-xCdxSeyTe1-y quaternary show almost linear variations on the concentration x (0.125≤x≤0.875). In addition, the simulated band structures for the

Zn1-xCdxSeyTe1-y quaternary exhibits a direct-gap for all concentrations. Moreover, low bowing parameters are observed. Also, some interesting optical properties such as dielectric constant, refractive index, extinction coefficient, absorption coefficient and reflectivity have been calculated by using the TB-mBJ method.  The results of our computations shows that the

Zn1-xCdxSeyTe1-y quaternary alloy is a promissing candidate for optoelectronic applications. It is noteworthy that the present work is the first theoretical study of the quaternary of interest using the FP-LAPW calculations.

References

S. Fujita, Wide-bandgap semiconductor materials: For their full bloom, Jpn. J. Appl. Phys. 54 (2015) 030101, http://dx.doi.org/10.7567/JJAP.54.030101.

S. Adachi, Properties of semiconductor alloys: Group IV, III-V and II-VI semiconductors, John Wiley & Sons Ltd, New York, (2009).

J. Van Vetchen, T. Bergstresser, Electronic structures of semiconductor alloys, Phys. Rev. B 1 (1970) 3351, https://doi.org/10.1103/PhysRevB.1.3351.

R. Hill, Energy-gap variations in semiconductor alloys, J. Phys. C: Solid St. Phys.

(1974) 521, https://doi.org/10.1088/0022-3719/7/3/009.

M. Jaros, Electronic properties of semiconductor alloy systems, Rep. Prog. Phys. 48 (1985) 1091, https://doi.org/10.1088/0034-4885/48/8/001.

F. Aymerich, Pseudopotential band structure of Al1-x-yGaxInyAs, Phys. Rev. B 26 (1982) 1968, https://doi.org/10.1103/PhysRevB.26.1968.

M. Afzaal, P. O’Brien, Recent developments in II-VI and III-V semiconductors and their applications in solar cells, J. Mater. Chem. 16 (2006) 1597, https://doi.org/10.1039/B512182E.

M. Hadjab, S. Berrah, H. Abid, M. I. Ziane, H. Bennacer and A.H. Reshak, First-principles investigation of the optical properties for rocksalt mixed metal oxide MgxZn1-xO, Mater. Chem. Phys. 182 (2016) 182, https://doi.org/10.1016/j.matchemphys.2016.07.021.

N. Kobayashi, Y. Horikoshi, Liquid Phase Epitaxial Growth of InAs1-x-yPxSby on InAs Substrate, Jpn. J. Appl. Phys. 20 (1981) 2301, https://doi.org/10.1143/JJAP.20.2301.

Y. Furukawa, Application of InGaAsP and AlGaAsSb for Optical Fiber Transmission, Jpn. J. Appl. Phys. 29 (1980) 295, https://doi.org/10.7567/JJAPS.19S3.295.

S. Adachi, Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2-4 µm optoelectronic device applications, J. Appl. Phys. 61 (1987) 4869, https://doi.org/10.1063/1.338352.

T.H. Chiu, J.L. Zyskind, W.T. Tsang, Molecular Beam Epitaxial Growth of InGaAsSb on (100) GaSb with emission wavelength 1.2 to 2.5µm range, J.E.M 16 (1987) 57, https://doi.org/10.1007/BF02667791.

D.K. Ghosh, L.K. Samanta, Refractive indices of some narrow and wide band materials, Infrared Physics 26 (1986) 335, https://doi.org/10.1016/0020-0891(86)90012-6.

A. Boumaza, O. Nemiri, K. Boubendira, S. Ghemid, H. Meradji, F.E.H. Hassan, First principles calculations of structural, electronic and optical properties of Zn1-xBexSeyTe1-y quaternary alloys, Com. Mat. Sci. 87 (2014) 202, http://dx.doi.org/10.1016/j.commatsci.2014.02.028.

Naeemullah, R. Khenata, G. Murtaza, S. Bin Omran, Direct band gap nature and optical response of BexMgyZn1-(x+y)Se, Mod. Phys. Lett. B 30 (2016) 1650007,

https://doi.org/10.1142/S021798491650007X.

H. Slimani, H. Abid, M. Benchehima, Prediction of optoelectronic properties for BexZnyCd1-x-ySe quaternary alloys: First-principles study, Optik 198 (2019) 163288, https://doi.org/10.1016/j.ijleo.2019.163288.

M. Benchehima, H. Abid, Electronic and optical properties of AlxGayIn1-x-yAs quaternary alloys with and without relaxation lattice matched to InP for applications: First-principles study, Optik 127 (2016) 6541, http://dx.doi.org/10.1016/j.ijleo.2016.04.092.

A. Assali, M. Bouslama, A.H. Reshak, S. Zerroug, H. Abid, Electronic structure and optical properties of dilute boron-bismide quaternary alloys BxGa1-xAs1-yBiy/GaAs for infrared Optoelectronic Devices, Optik 135 (2017) 57,

http://dx.doi.org/doi:10.1016/j.ijleo.2017.01.059.

M. Berber, N. Bouzouira, M. Mebrek, A. Boudali, H. Abid, and H. Moujri, Structural, electronic, and optical properties of quaternary alloys Al0.50Ga0.50NxSb1-x: a first-principles study, Rev. Mex. Fis. 66 (2020) 790, https://doi.org/10.31349/RevMexFis.66.790.

W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133, https://doi.org/10.1103/PhysRev.140.A1133.

P. Blaha, K. Schwarz, K.G.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Austria, 2001.

J. P. Perdew, A.Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett. 100 (2008) 136406,

https://doi.org/10.1103/PhysRevLett.100.136406.

F. Tran, P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, Phys. Rev. Lett. 102 (2009) 226401, https://doi.org/10.1103/PhysRevLett.102.226401.

J. Davies, A. Marshall, M. Scott, R. Griffiths, Structural and optical properties of GaAlInAs lattice matched to InP grown by low-pressure metalorganic vapor phase epitaxy, Appl. Phys. Lett. 53 (1988) 276, https://doi.org/10.1063/1.100593.

J. Orton, C. Foxon, Group III nitride semiconductors for short wavelength light emitting devices, Rep. Prog. Phys. 61 (1998) 1, https://doi.org/10.1088/0034-4885/61/1/001.

C.I.H. Ashby, C.C Mitchell, J. Han, N.A. Missert, P.P. Provencio, D.M. Follstaedt, G.M. Peake, L. Griego, Low-dislocation-density GaN from a single growth on a textured substrate, Appl. Phys. Lett. 77 (2000) 3233, https://doi.org/10.1063/1.1325394.

F. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci USA 30 (1944) 244, https://doi.org/10.1073/pnas.30.9.244.

W. Zeng, Q.J. Liu, Z.T. Liu, First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe, W. J. Appl. Phys. 1 (2016) 26, https://doi.org/10.11648/j.wjap.20160101.14.

X. Chen, X. Hua, J. Hu, J. M. Langlois, W. A. Goddard III, Band structures of II-VI semiconductors using Gaussian basis functions with separable ab initio pseudopotentials: Application to prediction of band offsets, Phy. Rev. B 53 (1996) 1377, https://doi.org/10.1103/PhysRevB.53.1377.

M.L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids, Phys. Rev. B 32 (1985) 7988, https://doi.org/10.1103/PhysRevB.32.7988.

B.R. Bennet, R. Magno, J.B. Boos, W. Kruppa, M.G. Ancona, Antimonide-based compound semiconductors for electronic devices: A review, Solid-State Electronics 49 (2005) 1875, https://doi.org/10.1016/j.sse.2005.09.008.

Y. Yan, Q. Wang, W. Shu, Z. Jia, X. Ren, X. Zhang, Y. Huang, First-principle study of the electronic and optical properties of BInGaAs quaternary alloy lattice-matched to GaAs, Phys. B Condens. Matter 407 (2012) 4570, https://doi.org/10.1016/j.physb.2012.08.021.

R. Abt, C. Ambrosch-Draxl, P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Phys. B Condens. Matter 194 (1994) 1451, https://doi.org/10.1016/0921-4526(94)91225-4.

C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method, Comput. Phys. Commun. 175 (2006) 1, https://doi.org/10.1016/j.cpc.2006.03.005.

A. Zunger, S.H. Wei, L. Ferreira, J.E. Bernard, Special quasirandom structures, Phys. Rev. Lett. 65 (1990) 353, https://doi.org/10.1103/PhysRevLett.65.353.

M. Benchehima, H. Abid, A. Sadoun, A.C. Chaouche, Optoelectronic properties of aluminum bismuth antimony ternary alloys for optical telecommunication applications: First principles calculation, Com. Mat. Sci. 155 (2018) 224, https://doi.org/10.1016/j.commatsci.2018.08.050.

A. Gazhulina, M. Marychev, Structural, electronic and nonlinear optical properties of B3 and B20 compounds: A first-principles investigation within the LDA, GGA and modified Becker-Johnson exchange potential plus LDA, J. All. Com. 623 (2015) 413, https://doi.org/10.1016/j.jallcom.2014.11.028.

T. Ouahrani, A.H. Reshak, R. Khenata, B. Amrani, M. Mebrouki, A. Otero-de-la-Roza, V. Luana, Ab-initio study of the structural, linear and nonlinear optical properties of CdAl2Se4 defect-chalcopyrite, J. Solid State Chem. 183 (2010) 46, https://doi.org/10.1016/j.jssc.2009.09.034.

Z.Y. Jiao, S.H. Ma, Y.L. Guo, Simulation of optical function for phosphide crystals following the DFT band structure calculations, Comp. T. C. 970 (2011) 79, https://doi.org/10.1016/j.comptc.2011.05.030.

N. Korozlu, K. Colakoglu, E. Deligoz, Structural, electronic, elastic and optical properties of CdxZn1-xTe mixed crystals, J. Phys. Condens. Matter 21 (2009) 175406, https://doi.org/10.1088/0953-8984/21/17/175406.

F. Wooten, Optical Properties of Solids, Academic Press, New York (1972) 49.

Downloads

Published

2021-07-02