DFT and TB-mBJLDA studies of structural, electronic and optical properties of Hg1-xCdxTe and Hg1-xZnxTe


  • N. Aouail
  • M. Noureddine Belkaid
  • A. Oukebdane
  • M. Hocine Tedjini




Ab initio;, FPLAPW, TB-mBJLDA, gap energy, optical properties


In this paper, the fundamental semiconductor properties of Hg1-xCdxTe and Hg1-xZnxTe are investigated by ab initio calculations based on the FP-LAPW method.   Structural properties have been calculated using LDA and GGA approximations. The electronic properties are studied using the LDA and GGA approximations, and the potential TB-mBJLDA coupled with the lattice parameters aLDA and aGGA. The optical properties are determined from the optimal gap energies based on the TB-mBJLDA potential. Lattice parameters aLDA obtained by the LDA calculations predict values that are in good agreement with the experimental results and are better than those results obtained by the GGA calculations.  The use of TB-mBJLDA potential coupled with the lattice parameter aGGA gives gap energy values in good agreement with the experimental results for all alloys except  Hg1-xZnxTe (x=0.5, 0.75) where the (TB-mBJ LDA+aLDA) is more suitable. Optical constants are calculated from the dielectric function in the energy range (0-30 eV).  The spectrum of real and imaginary parts of the dielectric function, the energy loss function, the refractive index, the extinction coefficient, the absorption coefficient, and the reflectivity show that optical properties of Hg1-xCdxTe are comparable to those of  Hg1-xZnxTe. Our results are found to be in reasonable agreement with existing data reported in the literature.


D. R. Yakovlev andW. Ossau, Magnetic Polarons, in Introducction to the Physics of Diluted Magnetic Semiconductors, edited by J. Kossut and J. A. Gaj (Springer-Verlag, Berlin, 2010); pp 18-19. DOI 10.1007/978-3-642-15856-8

ESPI Metals. Mercury Zinc Telluride (HgZnTe) Semiconductors. AZoM. https://www.azom.com/article. aspx?ArticleID=8467. viewed 20 November 2019.

M. Diakides, J. D. Bronzino, and D. R. Peterson, eds. Medical infrared imaging: principles and practices. (CRC press, 2012). https://doi.org/10.1201/b12938pp1.1-1.15

Williams, Philip C, and Susan G. Stevensen. Near-infrared reflectance analysis: food industry applications. Trends Food Sci. Technol. 1 (1990) 44. https://doi.org/10.1016/0924-2244(90)90030-3

R. R. Hampton, Applied Infrared Spectroscopy in the Rubber Industry, Rubber Chem. Technol. 45 (1972) 46, https://doi.org/10.5254/1.3544726

C. Corsi,Infrared: A Key Technology for Security Systems, Adv. Opt. Technol. vol. 2012, Article ID 838752, (2012). https://doi.org/10.1155/2012/838752

R.S. Hansen , Modeling of the nonlinear response of the intrinsic HgCdTe photoconductor by a two-level rate equation with a finite number of carriers available for photoexcitation, Appl. Opt. 42 (2003) 4819. doi: 10.1364/ao.42.004819.

N. Romeo V. Canevari L. Zini C. Spaggiari, HgCdTe thin films for solar cells application prepared by multisource evaporation, Thin Solid Films, 157 (1988) 175. https://doi.org/10.1016/0040-6090(88)90001-6

Rogalski, Antony. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68 (2005) 2267. https://doi.org/10.1088/0034-4885/68/10/R01

A. Rogalski, Hg1¡xZxTe As a potential infrared detector material Prog. Quant. Electr. 13 (1989) 299. https://doi.org/10.1016/0079-6727(89)90008-6

M. Boucharef, et al. First-principles study of the electronic and structural properties of (CdTe) n/(ZnTe) n superlattices. Superlattices

Microstruct. 75 (2014) 818. https://doi.org/10.1016/j.spmi.2014.09.014

F. Hassan, El Haj, et al. Ab initio study of the fundamental properties of HgSe, HgTe and their HgSexTe1¡x alloys. Phys. Scr 84.6 (2011) 065601. https://doi.org/10.1088/0031-8949/84/06/065601

M. Debbarma et al., Density Functional Calculations of Elastic and Thermal Properties of Zinc-Blende Mercury-Cadmium-Chalcogenide Ternary Alloys. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00778-7

F. Kadari, et al. First-principles study of the structural, electronic and optical properties of the cubic triangular quaternary ZnxCdyHg1¡x¡yTe alloys under hydrostatic pressure. Chin. J. Phys. 59 (2019) 209. https://doi.org/10.1016/j.cjph.2019.02.016

A. Laref, et al. Compositional and spin-orbit control on the electronic structure and optical characteristics of Zn-HgTe alloys using mBJ-GGA approach. J. Mater. Sci. 52.12 (2017) 7039-7057. https://doi.org/10.1007/s10853-017-0937-5

S. Al-Rajoub, and B. Hamad, Theoretical investigations of the structural, electronic and optical properties of Hg1-x Cd x Te alloys. Philos Mag. 95.22 (2015) 2466-2481.https://doi.org/10.1080/14786435.2015.1061219

B.V. Robouch et al., Ion distribution preferences in ternary crystals Zn x Cd 1-x Te, Zn 1-x Hg x Te and Cd 1-x Hg x Te. Eur. Phys. J. B 84.2 (2011) 183-195. https://doi.org/10.1140/epjb/e2011-20575-1

A. Morales-Garc´ıa, R. Valero, and F. Illas, An empirical, yet practical way to predict the band gap in solids by using density functional band structure calculations. J. Phys. Chem C. 121 (2017): 18862-18866. 10.1021/acs.jpcc.7b07421.

S. Belhadj, B. Lagoun, M. Benabdallah Taouti, S. Khenchoul, A. Benghia, and D. Benbertal. TB-mBJ calculation of structural, electronic and optical properties of two monovalent iodates AIO3 (A= Tl, ®-Rb). Chin. J. Phys. 59 (2019) 10-20. https://doi.org/10.1016/j.cjph.2019.02.019

J. A. Camargo-Martínez, and R. Baquero, Performance of the modified Becke-Johnson potential for semiconductors. Phys. Rev. B. 86.19 (2012) 195106. https://doi.org/10.1103/PhysRevB.86.195106

D. Koller, F. Tran, and P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential Phys. Rev. B. 83.19 (2011) 195134. https://doi.org/10.1103/PhysRevB.83.195134

T. Takeda, Linear methods for fully relativistic energy-band calculations. J. Phys. F: Met. Phys. 9.5 (1979) 815. https://doi.org/10.1088/0305-4608/9/5/009

Elk version 5.2.14, http://elk.sourceforge.net/.

J. P. Perdew, E. R. McMullen, and Alex Zunger, Densityfunctional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge. Phys. Rev. A. 23.6 (1981) 2785. https://doi.org/10.1103/PhysRevA.23.2785

Perdew, John P., Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77.18 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865

Meinert, Markus. Modified Becke-Johnson potential investigation of half-metallic Heusler compounds. Phys. Rev. B. 87.4 (2013) 045103. https://doi.org/10.1103/PhysRevB.87.045103

Marques, Miguel AL, Micael JT Oliveira, and Tobias Burnus. Libxc: A library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183.10 (2012) 2272. https://doi.org/10.1016/j.cpc.2012.05.007

Birch, Francis. Finite elastic strain of cubic crystals. Phys. Rev. 71.11 (1947) 809. https://doi.org/10.1103/PhysRev.71.809

San-Dong, Guo, and Liu Bang-Gui. Density-functional theory investigation of energy gaps and optical properties of Hg1-xCdxTe and In1-xGaxAs. Chin. Phys. B. 21.1 (2012) 017101. https://doi.org/10.1088/1674-1056/21/1/017101

Qi-Jun, Liu, Zhang Ning-Chao, Liu Fu-Sheng, and Liu Zheng-Tang. Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations. Chin. Phys. B. 23, no. 4 (2014): 047101.https://doi.org/10.1088/1674-1056/23/4/047101

Korozlu, Nurettin, K. Colakoglu, and E. Deligoz. Structural, electronic, elastic and optical properties of cdxzn1-xte mixed crystals. Journal of Physics: Condensed Matter 21.17 (2009) 175406. https://doi.org/10.1088/0953-8984/21/17/175406

Ilyas, Bahaa M., and Badal H. Elias. A theoretical study of perovskite CsXCl3 (X= Pb, Cd) within first principles calculations. Physica B Condens 510 (2017) 60-73.https://doi.org/10.1016/j.physb.2016.12.019

Zaari, H., M. Boujnah, A. El Hachimi, A. Benyoussef, and A. El Kenz. Optical properties of ZnTe doped with transition metals (Ti, Cr and Mn).Opt Quant Electron. 46 (2014) 75-86. https://doi.org/10.1007/s11082-013-9708-y

Toudert, Johann, and Rosal´ıa Serna. Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics. Opt. Mater. Express. 7 (2017) 2299-2325. https://doi.org/10.1364/OME.7.002299

Ali, M. A., M. Anwar Hossain, M. A. Rayhan, M. M. Hossain, M. M. Uddin, Md Roknuzzaman, Ken Ostrikov, A. K. M. A. Islam, and S. H. Naqib. First-principles study of elastic, electronic, optical and thermoelectric properties of newly synthesized K2Cu2GeS4 chalcogenide.J. Alloys Compd. 781: 37-46(2019). https://doi.org/101016/j.jallcom.2018.12.035

Mendi, R. Taghavi, S. M. Elahi, and M. R. Abolhassani. Firstprinciples investigation of the structural, electronic and optical properties of V-doped single-walled ZnO nanotube (8,0).MOD PHYS LETT B. 28.17: 1450139(2014). https:


Wang, Gang, Song Wu, Zhaohua Geng, Songyou Wang, Liangyao Chen, and Yu Jia. First-principles study on the electronic structures and the optical properties of Hg 1-x Cd x Te.J KOREAN PHYS SOC. 56, no. 41 : 1307-1310(2010). DOI:10.3938/jkps.56.1307

Li, Qing-Fang, Ge Hu, Qing She, Jing Yao, and Wen-Jiang Feng. Electronic structure and optical properties of Cudoping and Zn vacancy impurities in ZnTe.,J Mol Model. 19, no. 9: 3805-3812(2013). https://doi.org/10.1007/s00894-013-1901-1

Secuk, M. N., M. Aycibin, B. Erdinc, S. E. Gulebaglan, E. K. Dogan, and H. Akkus. Ab-initio calculations of structural, electronic, optical, dynamic and thermodynamic properties of HgTe and HgSe.Am J. Condens. Matter Phys. 4, no. 1: 13-19(2014). DOI:10.5923/j.ajcmp.20140401.02

Ireneusz Strzalkowski, Sharad Joshi, and C. R. Crowell [1976 APPL PHYS LETT. 28 350.40] Cardona, Manuel. Infrared dielectric constant and ultraviolet optical properties of solids with diamond, zinc blende, wurtzite, and rocksalt structure. J. Appl Phys. 36.7 (1965) 2181. https://doi.org/10.1063/1.1714445

E. Salman, and W. Al-zubady, Optical confinement factor of Hg0:2Cd0:8Te/ Hg0:5Cd0:5Te multiple quantum well laser. College of Science for women / University of Baghdad (2018).

Tedjini, M. H., A. Oukebdane, M. N. Belkaid, N. Aouail, and N. Belameiri. Ab initio and Monte Carlo studies of physical properties of semiconductor radiation detectors. Indian J. Phys. (2021) 1-12 . https://doi.org/10.1007/s12648-020-01916-y

Deligoz, Engin, Kemal Colakoglu, and Yasemin Ciftci. Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B Condens 373 (2006) 124-130. https://doi.org/10.1016/j.physb.2005.11.099

Woolley, J. C., and B. Ray. Solid solution in AIIBVI tellurides. Journal of Physics and Chemistry of Solids 13.1-2 (1960) 151-153. https://doi.org/10.1016/0022-3697(60)90135-9

S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductor, John Wiley and Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2005. 978-0-470-09032-9.

Ireneusz Strzalkowski, Sharad Joshi, and C. R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe, Appl. Phys. Lett. 28 (1976) 350. doi: 10.1063/1.88755

T. Hattori, Y. Homma, A. Mitsuishi, and M. Tacke. Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared. Opt. Commun. 7 (1973) 229-232. https://doi. org/10.1016/0030-4018(73)90015-1

R. Khenata, A. Bouhemadou, M. Sahnoun, Ali H. Reshak, H. Baltache, and M. Rabah, Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure. Comput. Mater. Sci. 38 (2006) 29. https://doi.org/10.1016/j.commatsci.2006.01.013

M. Cardona, and G˜A 1 4 nther Harbeke, Absorption Spectrum of Germanium and Zinc Blende Type Materials at Energies Higher than the Fundamental Absorption Edge. J. Appl. Phys. 34 (1963) 813. https://doi.org/10.1063/1.1729543

Ghasemi Hasan, Mokhtari Aliand Soleimanian Vishtasb, Introduce of ZnxHg(1-x)Te as a room temperature photodetector: ab initio calculations of the electronic structure and charge carrier transport, Mater. Res. Express. 5 (2018). 015910 https://doi.org/10.1088/2053-1591/aaa740

L. Ley, R. A. Pollak, F. R. McFeely, Sa P. Kowalczyk, and D. A. Shirley, Total valence-band densities of states of III-V and II-VI compounds from X-ray photoemission spectroscopy. Phys. Rev. B 9 (1974) 600. https://doi.org/10.1103/PhysRevB.9.600

F. Boutaiba, Ali Zaoui, and M. Ferhat. Fundamental and transport properties of ZnX, CdX and HgX (X= S, Se, Te) compounds. Superlattice Microst 46.6 (2009) 823. https://doi.org/10.1016/j.spmi.2009.09.002

M. Debbarma, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, and S. Chattopadhyaya, First principle based calculations of the optoelectronic features of HgSxSe1-x, HgSxTe1-x and HgSexTe1-x alloys with GGA+ U functional. J. Phys. Chem. Solids 131 (2019) 86. https://doi.org/10.1016/j.jpcs.2019.03.009

M. Linder, GFSchatz, P. Link, HPWagner, W.Kuhn, and W. Gebhardt, J. Phys. Condens. Matter 4 (1992) 4601.

Hansen, G. L, J. L. Schmit, and T. N. Casselman. Energy gap versus alloy composition and temperature in Hg1¡xCdxTe. J. Appl. Phys. 53 (1982) 7099. https://doi.org/10.1063/1.330018

Miloua, R., Z. Kebbab, F. Miloua, and N. Benramdane. Ab initio investigation of phase separation in Ca1¡xZn¡xO alloys. Phys. Lett. A 372 (2008) 1910. https://doi.org/10.1016/j.physleta.2007.10.077

O. Madelung, W. Von der Osten, and U. R¨ossler, Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds/Intrinsische Eigenschaften Von Elementen Der IV. Gruppe und Von III-V-, II-VI-und I-VII-Verbindungen. Vol. 22. Springer Science & Business Media, 1986.

M. B. Reine, Fundamental properties of mercury cadmium telluride. Encyclopedia of Modern Optics, Academic Press, London 322 (2004).

K. H. Hellwege, and O. Madelung, Semiconductors Physics of Group IV Elements and III-V Compounds.Landolt-Börnstein New Series, Group III 17 (1982).

Okuyama, Hiroyuki, Yuko Kishita, and Akira Ishibashi. Quaternary alloy Zn1¡xMgxS y Se1¡y. textitPhys. Rev. B 57 (1998) 2257. https://doi.org/10.1103/PhysRevB.57.2257