Optimal electronic doping in p-wave superconductors


  • Benjamín Millan Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, C.P. 04510, Ciudad de México, México.
  • Ivonne Judith Hernández
  • Luis Antonio Pérez
  • José Samuel Millan Universidad Autónoma del Carmen Av. 56 No. 4 Colonia Aviación cp 24180 Cd. del Carmen, Campeche, México. http://orcid.org/0000-0001-8461-5974




Theories and models of superconducting state, Pairing symmetries (other than s-wave), Pseudogap regime.


Recently, within a generalized Hubbard model which includes correlated nearest (∆t) and next-nearest hopping interactions (∆t_3 ), a comparative study between d- and s*- wave superconducting ground states on a square lattice was performed. It was found that the critical temperature of transition T_c (n), as a function of the electron concentration n, reaches a maximum (T_(c-max) at a given optimal doping (n_op) for each value of the ratio (t’)⁄t, where t and t’ are the tight-binding nearest and next-nearest hopping parameter of a square lattice, respectively. From all values obtained for T_(c-max) ((t’)⁄(t,n_op) a global minimum one was encountered for both symmetries. Likewise, in the same space, a minimal ground state energy E_g was also obtained. For d-wave channel both minima are localized around the same optimal doping, however, for s* symmetry, the two minima are located at different electron concentrations. In this work, we additionally study how the p-wave ground-state energy and the critical temperature depend on the hoppings parameters and the electron concentration. The results show that for p-wave, minimum global values of  and  in the space do exist too, they are found around half filling but, as occurs for s*- wave, the minimum of T_(c-max) does not occur at the same point as . Moreover, we present a ground-state phase diagram in the space (t’)⁄(t,n_op) where it is possible to find zones of coexistence and competition between the s*-, p- and d-wave symmetries. Also, an analysis of the shape of the Fermi surface and the single-particle energy, as functions of the wave vector of an electron in the Cooper pair, has been done for different regions of the mentioned space.


A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenderberg, Nature 372, 532 (1994).

T. Matsuzaki, N. Momono, M. Oda, M. Ido, J. Phys. Soc. Jpn. 73 2232 (2004).

Markus Schmid, Brian M Andersen, Arno P Kampf and P J Hirschfeld, New Journal of Physics 12, 053043 (2010).

Sheng Ran, Chris Eckberg, Qing-Ping Ding, Yuji Furukawa, Tristin Metz, Shanta R. Saha, I-Lin Liu, Mark Zic, Hyunsoo Kim, Johnpierre Paglione, Nicholas P. Butch, Science 365, 684–687 (2019).

J. S. Millán, L. A. Pérez, C. Wang, Physics Letters A 335, 505 (2005).

L.A. Pérez, J. S. Millán, C. Wang, Int. J. Mod. Phys. B 24, 5229 (2010).

J. S. Millan, I. R. Ortiz, L. A. Perez, C. Wang, Journal of Physics: Conference Series 490, 012221 (2014).

B. Millán, L. A. Pérez, J. Samuel Millán, Revista Mexicana de Física 64, 233-239 (2018).

B. Millán, I.J. Hernández-Hernández, L.A. Pérez, J. S. Millán, to be published in Revista Mexicana de Física (2021).

I. I. Mazin and D. J. Singh, Physical Review Letters 79, 733 (1997).

R. Matzdorf, Z. Fang, Ismail, J. Zhang, T. Kimura, Y. Tokura, K. Terakura, and E. W. Plummer, Science 289, 746 (2000).

J. S. Millán, L. A. Pérez, and C. Wang, Phys. Status Solidi B 251, 2302–2306 (2014).

L.A. Pérez, Ph. D. Thesis, Superconductividad con simetría d en el modelo de Hubbard, UNAM, p. 66 (2002).

L.A. Pérez, O. Navarro, C. Wang, Phys. Rev. B 53, 15389 (1996).

E. Daggotto, A. Nazarenko, A. Moreo, Phys. Rev. Lett. 74, 310 (1995).

Min Pan Zheng Huang, Huan Feng Ma, Ya Jing Cui, Xin Sheng Yang. Yong Zhao, J. Supercond. Nov. Magn. 23, 985–988 (2010).

L. T. Yang, J. K. Liang, Q. L. Liu, J. Luo, G. B. Song, F. S. Liu, X. M. Feng, and G. H. Rao, Journal of Applied Physics 95, No 4, 1942 (2004).