Probing the Structural, elastic, electronic and Thermoelectric Properties of C15-type Laves phase LaCo2: A DFT based ab-initio investigation

Authors

  • S. Ziri
  • L. Blaha
  • F. Boukabrime
  • A. Maafa
  • A. Oughilas
  • A. Bouabc¸a
  • ROZALE HABIB Condensed matter and sustainable development Laboratory MDD Department, Faculty of Science, University of Sidi-Bel-Abbes, Sidi-Bel-Abbes, 22000-Algeria

DOI:

https://doi.org/10.31349/RevMexFis.67.4.041003

Abstract

Using first-principles calculations based on density functional theory, structural, elastic, electronic and thermoelectric properties of laves phase LaCo2 intermetallic compound with prototype MgCu2 are stated in this paper. The optimized lattice constant by structural optimization is found to be rationally compatible with the experimental lattice constant.  The Generalized Gradient Approximation (GGA) +Hubbard model was incorporated to evaluate the exact electronic structure. Elastic properties such as, elastic constants, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson ratio ν have been determined using the Voigt–Reuss– Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh’s ratio. The band structures and the Cauchy pressure show that the material behaves as metallic. In addition, semi-classical Boltzmann theory is used to verify the applicability of the material for thermoelectric applications. Calculations depict that the spin-up/down transport coefficients are temperature-dependent. It has been found that LaCo2 has a high Seebeck coefficient and therefore a large power factor.

References

Thoma, D. J. (2001). Intermetallics: Laves Phases. Encyclopedia of Materials: Science and Technology, 4205–4213. doi:10.1016/b0-08-043152-6/00739-7

Salma, M. U., Rahman, M. A., Kholil, M. I., & Ali, M. S. (2019). MgCu2-type laves phases CaPt2, SrPd2 and SrPt2: A DFT based ab-initio investigation. Solid State Communications. doi:10.1016/j.ssc.2019.03.012

Gratz, E., & Markosyan, A. S. (2001). Physical properties of RCo2Laves phases. Journal of Physics: Condensed Matter, 13(23), R385–R413. doi:10.1088/0953-8984/13/23/202

Kholil, M. I., Rahaman, M. Z., & Rahman, M. A. (2017). First principles study of the structural, elastic, electronic, optical and thermodynamic properties of SrRh 2 laves phase intermetallic compound. Computational Condensed Matter, 13, 65–71. doi:10.1016/j.cocom.2017.09.008

Zhang, X., Chen, L., Ma, M., Zhu, Y., Zhang, S., & Liu, R. (2011). Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure. Journal of Applied Physics, 109(11), 113523. doi:10.1063/1.3590707

Robertson, D. L., Cannon, J. F., & Hall, H. T. (1972). High-pressure and high-temperature synthesis of LaCo2. Materials Research Bulletin, 7(9), 977–981. doi:10.1016/0025-5408(72)90088-8

Nakamura, H., Nakahara, A., Shiga, M., V. Tsvyashchenko, A., & N. Fomicheva, L. (2002). Evidence of Spontaneous Co Moment in a Rare-Earth–Cobalt Laves Phase Compound:59Co NMR Study of LaCo2. Journal of the Physical Society of Japan, 71(9), 2117–2120. doi:10.1143/jpsj.71.2117

Sasaki, S., Kusakabe, K., Geshi, M., Nagara, H., & Suzuki, N. (2007). First-Principles Electronic Structure Calculation of LaCo2in MgCu2Structure. Journal of the Physical Society of Japan, 76(8), 084711. doi:10.1143/jpsj.76.084711

P. Hohenberg and W. Kohn, Phys. Rev. B. 136 (1964) 864.

Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138. doi:10.1103/physrev.140.a1133

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienne University of Technology, Vienne, Austria, 2001.

M. Berber, N. Bouzouira, M. Mebrek, A. Boudali, H. Abid, H. Moujri. Structural, electronic, and optical properties of quaternary alloys Al0.50Ga0.50NxSb1-x : a first principles study. Rev Mex Fis 66, (2020), doi: https://doi.org/10.31349/RevMexFis.66.790

Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048 5079. doi:10.1103/physrevb.23.5048

Anisimov, V. I., Solovyev, I. V., Korotin, M. A., Czyżyk, M. T., & Sawatzky, G. A. (1993). Density-functional theory and NiO photoemission spectra. Physical Review B, 48(23), 16929–16934. doi:10.1103/physrevb.48.16929

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. doi:10.1103/physrevb.13.5188

Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Band theory and Mott insulators: HubbardUinstead of StonerI. Physical Review B, 44(3), 943–954. doi:10.1103/physrevb.44.943

Madsen, G. K. H., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175(1), 67–71. doi:10.1016/j.cpc.2006.03.007

Bentouaf, A., Mebsout, R., Rached, H., Amari, S., Reshak, A. H., & Aïssa, B. (2016). Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX 2 (X = Co and Fe). Journal of Alloys and Compounds, 689, 885–893. doi:10.1016/j.jallcom.2016.08.046

Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30(9), 244–247. doi:10.1073/pnas.30.9.244

L. F. Blaha, A. Maafa, A. Chahed, M.A.H. Boukli, A. Sayade. The first principle calculations of structural, magneto-electronic, elastic, mechanical, and thermoelectric properties of half-metallic double perovskite oxide Sr2TiCoO6. Rev Mex Fis 67, (2021) https://doi.org/10.31349/RevMexFis.67.114

Mousa, A. A., Hamad, B. A., & Khalifeh, J. M. (2009). Structure, electronic and elastic properties of the NbRu shape memory alloys. The European Physical Journal B, 72(4), 575–581. doi:10.1140/epjb/e2009-00375-0

Wang, J.-Y., & Zhou, Y.-C. (2004). Polymorphism ofTi3SiC2ceramic: First-principles investigations. Physical Review B, 69(14). doi:10.1103/physrevb.69.144108

O. Benguerine, Z. Nabi, B. Benichou, B. Bouabdallah, H. Bouchenafa, M. Maachou, R. Ahuja. Revista mexicana de física, ISSN 0035-001X, Vol. 66, no 2, p. 121-126 10.31349/RevMexFis.66.121

Jones, R. O., & Gunnarsson, O. (1989). The density functional formalism, its applications and prospects. Reviews of Modern Physics, 61(3), 689–746. doi:10.1103/revmodphys.61.689

Dar, S. A., Sharma, R., Srivastava, V., & Sakalle, U. K. (2019). Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6. RSC Advances, 9(17), 9522–9532. doi:10.1039/c9ra00313d

Liu, Y., Hu, W.-C., Li, D., Zeng, X.-Q., Xu, C.-S., & Yang, X.-J. (2012). First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure. Intermetallics, 31, 257–263. doi:10.1016/j.intermet.2012.07.017

Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. doi:10.1080/14786440808520496.

S. Tab, A. Boudali, M. Berber, M. Driss khodja, O. Lhaj El Hachemi, H. Moujr. Structural, elastic, electronic, and magnetic properties of quaternary alloys BBi0.75Mn0.125N0.125 : a first-principles study. Rev Mex Fis 66, (2020). https://doi.org/10.31349/RevMexFis.66.627

Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. doi:10.1088/0370-1298/65/5/307

Sajad Ahmad Dar , Malak Azmat Ali , and Vipul Srivastava Eur. Phys. J. B (2020) 93: 102. https://doi.org/10.1140/epjb/e2020-10073-x

Khandy, S. A., & Gupta, D. C. (2019). Magneto-electronic, Mechanical, Thermoelectric and Thermodynamic Properties of Ductile Perovskite Ba2SmNbO6. Materials Chemistry and Physics, 121983. doi:10.1016/j.matchemphys.2019.121983

Sajad Ahmad Dar , Vipul Srivastava, , Umesh Kumar Sakalle. Structural, elastic, mechanical, electronic, magnetic, thermoelectric and thermodynamic investigation of half metallic double perovskite oxide Sr2MnTaO6. Journal of Magnetism and Magnetic Materials 484 (2019). https://doi.org/10.1016/j.jmmm.2019.04.048

Bencherif, K., Yakoubi, A., Della, N., Miloud Abid, O., Khachai, H., Ahmed, R., … Murtaza, G. (2016). First Principles Investigation of the Elastic, Optoelectronic and Thermal Properties of XRuSb: (X = V, Nb, Ta) Semi-Heusler Compounds Using the mBJ Exchange Potential. Journal of Electronic Materials, 45(7), 3479–3490. doi:10.1007/s11664-016-4488-3

Dar, S. A., Srivastava, V., Sakalle, U. K., & Khandy, S. A. (2017). Ab Initio Investigation on Electronic, Magnetic, Mechanical, and Thermodynamic Properties of AMO3 (A = Eu, M = Ga, In) Perovskites. Journal of Superconductivity and Novel Magnetism, 31(5), 1549–1558. doi:10.1007/s10948-017-4365-1Electronic

: Reshak, A. H. (2017). Thermoelectric properties of TbFe 2 and TbCo 2 in C15- laves phase: Spin-polarized DFT+U approach. Journal of Magnetism and Magnetic Materials, 422, 287–298. doi:10.1016/j.jmmm.2016.09.037

: Pawar, H., Aynyas, M., & Sanyal, S. P. (2018). Thermoelectric properties of rare-earth based RENi2 (RE = Dy, Ho and Er) Laves phase compounds. Journal of Magnetism and Magnetic Materials, 468, 123–131. doi:10.1016/j.jmmm.2018.07.085

Downloads

Published

2021-07-02

How to Cite

[1]
S. Ziri, “Probing the Structural, elastic, electronic and Thermoelectric Properties of C15-type Laves phase LaCo2: A DFT based ab-initio investigation”, Rev. Mex. Fís., vol. 67, no. 4 Jul-Aug, pp. 041003 1–9, Jul. 2021.