Probing the Structural, elastic, electronic and Thermoelectric Properties of C15-type Laves phase LaCo2: A DFT based ab-initio investigation
DOI:
https://doi.org/10.31349/RevMexFis.67.4.041003Abstract
Using first-principles calculations based on density functional theory, structural, elastic, electronic and thermoelectric properties of laves phase LaCo2 intermetallic compound with prototype MgCu2 are stated in this paper. The optimized lattice constant by structural optimization is found to be rationally compatible with the experimental lattice constant. The Generalized Gradient Approximation (GGA) +Hubbard model was incorporated to evaluate the exact electronic structure. Elastic properties such as, elastic constants, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson ratio ν have been determined using the Voigt–Reuss– Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh’s ratio. The band structures and the Cauchy pressure show that the material behaves as metallic. In addition, semi-classical Boltzmann theory is used to verify the applicability of the material for thermoelectric applications. Calculations depict that the spin-up/down transport coefficients are temperature-dependent. It has been found that LaCo2 has a high Seebeck coefficient and therefore a large power factor.
References
Thoma, D. J. (2001). Intermetallics: Laves Phases. Encyclopedia of Materials: Science and Technology, 4205–4213. doi:10.1016/b0-08-043152-6/00739-7
Salma, M. U., Rahman, M. A., Kholil, M. I., & Ali, M. S. (2019). MgCu2-type laves phases CaPt2, SrPd2 and SrPt2: A DFT based ab-initio investigation. Solid State Communications. doi:10.1016/j.ssc.2019.03.012
Gratz, E., & Markosyan, A. S. (2001). Physical properties of RCo2Laves phases. Journal of Physics: Condensed Matter, 13(23), R385–R413. doi:10.1088/0953-8984/13/23/202
Kholil, M. I., Rahaman, M. Z., & Rahman, M. A. (2017). First principles study of the structural, elastic, electronic, optical and thermodynamic properties of SrRh 2 laves phase intermetallic compound. Computational Condensed Matter, 13, 65–71. doi:10.1016/j.cocom.2017.09.008
Zhang, X., Chen, L., Ma, M., Zhu, Y., Zhang, S., & Liu, R. (2011). Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure. Journal of Applied Physics, 109(11), 113523. doi:10.1063/1.3590707
Robertson, D. L., Cannon, J. F., & Hall, H. T. (1972). High-pressure and high-temperature synthesis of LaCo2. Materials Research Bulletin, 7(9), 977–981. doi:10.1016/0025-5408(72)90088-8
Nakamura, H., Nakahara, A., Shiga, M., V. Tsvyashchenko, A., & N. Fomicheva, L. (2002). Evidence of Spontaneous Co Moment in a Rare-Earth–Cobalt Laves Phase Compound:59Co NMR Study of LaCo2. Journal of the Physical Society of Japan, 71(9), 2117–2120. doi:10.1143/jpsj.71.2117
Sasaki, S., Kusakabe, K., Geshi, M., Nagara, H., & Suzuki, N. (2007). First-Principles Electronic Structure Calculation of LaCo2in MgCu2Structure. Journal of the Physical Society of Japan, 76(8), 084711. doi:10.1143/jpsj.76.084711
P. Hohenberg and W. Kohn, Phys. Rev. B. 136 (1964) 864.
Kohn, W., & Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A), A1133–A1138. doi:10.1103/physrev.140.a1133
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienne University of Technology, Vienne, Austria, 2001.
M. Berber, N. Bouzouira, M. Mebrek, A. Boudali, H. Abid, H. Moujri. Structural, electronic, and optical properties of quaternary alloys Al0.50Ga0.50NxSb1-x : a first principles study. Rev Mex Fis 66, (2020), doi: https://doi.org/10.31349/RevMexFis.66.790
Perdew, J. P., & Zunger, A. (1981). Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10), 5048 5079. doi:10.1103/physrevb.23.5048
Anisimov, V. I., Solovyev, I. V., Korotin, M. A., Czyżyk, M. T., & Sawatzky, G. A. (1993). Density-functional theory and NiO photoemission spectra. Physical Review B, 48(23), 16929–16934. doi:10.1103/physrevb.48.16929
Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192. doi:10.1103/physrevb.13.5188
Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Band theory and Mott insulators: HubbardUinstead of StonerI. Physical Review B, 44(3), 943–954. doi:10.1103/physrevb.44.943
Madsen, G. K. H., & Singh, D. J. (2006). BoltzTraP. A code for calculating band-structure dependent quantities. Computer Physics Communications, 175(1), 67–71. doi:10.1016/j.cpc.2006.03.007
Bentouaf, A., Mebsout, R., Rached, H., Amari, S., Reshak, A. H., & Aïssa, B. (2016). Theoretical investigation of the structural, electronic, magnetic and elastic properties of binary cubic C15-Laves phases TbX 2 (X = Co and Fe). Journal of Alloys and Compounds, 689, 885–893. doi:10.1016/j.jallcom.2016.08.046
Murnaghan, F. D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30(9), 244–247. doi:10.1073/pnas.30.9.244
L. F. Blaha, A. Maafa, A. Chahed, M.A.H. Boukli, A. Sayade. The first principle calculations of structural, magneto-electronic, elastic, mechanical, and thermoelectric properties of half-metallic double perovskite oxide Sr2TiCoO6. Rev Mex Fis 67, (2021) https://doi.org/10.31349/RevMexFis.67.114
Mousa, A. A., Hamad, B. A., & Khalifeh, J. M. (2009). Structure, electronic and elastic properties of the NbRu shape memory alloys. The European Physical Journal B, 72(4), 575–581. doi:10.1140/epjb/e2009-00375-0
Wang, J.-Y., & Zhou, Y.-C. (2004). Polymorphism ofTi3SiC2ceramic: First-principles investigations. Physical Review B, 69(14). doi:10.1103/physrevb.69.144108
O. Benguerine, Z. Nabi, B. Benichou, B. Bouabdallah, H. Bouchenafa, M. Maachou, R. Ahuja. Revista mexicana de física, ISSN 0035-001X, Vol. 66, no 2, p. 121-126 10.31349/RevMexFis.66.121
Jones, R. O., & Gunnarsson, O. (1989). The density functional formalism, its applications and prospects. Reviews of Modern Physics, 61(3), 689–746. doi:10.1103/revmodphys.61.689
Dar, S. A., Sharma, R., Srivastava, V., & Sakalle, U. K. (2019). Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6. RSC Advances, 9(17), 9522–9532. doi:10.1039/c9ra00313d
Liu, Y., Hu, W.-C., Li, D., Zeng, X.-Q., Xu, C.-S., & Yang, X.-J. (2012). First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure. Intermetallics, 31, 257–263. doi:10.1016/j.intermet.2012.07.017
Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823–843. doi:10.1080/14786440808520496.
S. Tab, A. Boudali, M. Berber, M. Driss khodja, O. Lhaj El Hachemi, H. Moujr. Structural, elastic, electronic, and magnetic properties of quaternary alloys BBi0.75Mn0.125N0.125 : a first-principles study. Rev Mex Fis 66, (2020). https://doi.org/10.31349/RevMexFis.66.627
Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349–354. doi:10.1088/0370-1298/65/5/307
Sajad Ahmad Dar , Malak Azmat Ali , and Vipul Srivastava Eur. Phys. J. B (2020) 93: 102. https://doi.org/10.1140/epjb/e2020-10073-x
Khandy, S. A., & Gupta, D. C. (2019). Magneto-electronic, Mechanical, Thermoelectric and Thermodynamic Properties of Ductile Perovskite Ba2SmNbO6. Materials Chemistry and Physics, 121983. doi:10.1016/j.matchemphys.2019.121983
Sajad Ahmad Dar , Vipul Srivastava, , Umesh Kumar Sakalle. Structural, elastic, mechanical, electronic, magnetic, thermoelectric and thermodynamic investigation of half metallic double perovskite oxide Sr2MnTaO6. Journal of Magnetism and Magnetic Materials 484 (2019). https://doi.org/10.1016/j.jmmm.2019.04.048
Bencherif, K., Yakoubi, A., Della, N., Miloud Abid, O., Khachai, H., Ahmed, R., … Murtaza, G. (2016). First Principles Investigation of the Elastic, Optoelectronic and Thermal Properties of XRuSb: (X = V, Nb, Ta) Semi-Heusler Compounds Using the mBJ Exchange Potential. Journal of Electronic Materials, 45(7), 3479–3490. doi:10.1007/s11664-016-4488-3
Dar, S. A., Srivastava, V., Sakalle, U. K., & Khandy, S. A. (2017). Ab Initio Investigation on Electronic, Magnetic, Mechanical, and Thermodynamic Properties of AMO3 (A = Eu, M = Ga, In) Perovskites. Journal of Superconductivity and Novel Magnetism, 31(5), 1549–1558. doi:10.1007/s10948-017-4365-1Electronic
: Reshak, A. H. (2017). Thermoelectric properties of TbFe 2 and TbCo 2 in C15- laves phase: Spin-polarized DFT+U approach. Journal of Magnetism and Magnetic Materials, 422, 287–298. doi:10.1016/j.jmmm.2016.09.037
: Pawar, H., Aynyas, M., & Sanyal, S. P. (2018). Thermoelectric properties of rare-earth based RENi2 (RE = Dy, Ho and Er) Laves phase compounds. Journal of Magnetism and Magnetic Materials, 468, 123–131. doi:10.1016/j.jmmm.2018.07.085
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 ROZALE HABIB
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.