Particle size and convergent electron diffraction patterns of triangular prismatic gold nanoparticles


  • Clemente Fernando-Marquez Instituto de Física, Universidad Nacional Autónoma de México
  • Gilberto Mondragón-Galicia Instituto de Investigaciones Nucleares.
  • Lourdes Bazán-Díaz Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México
  • José Reyes-Gasga Instituto de Física, Universidad Nacional Autónoma de México



Gold nanoparticles, Crystal morphology, Characterization, Transmission electron microscopy, Converging beam electron diffraction, Electron diffraction.


Convergent beam diffraction (CBED) patterns of nanoparticles are possible. CBED of triangular prismatic shaped Au nanoparticle with focus on diffraction pattern symmetry and forbidden reflections observed along [111] and [112] zone axes are reported in this work. It is well known that the CBED patterns of nanoparticles of 30 nm or less in size only show bright kinematical discs. The dynamic contrast with Kikuchi and sharp HOLZ lines within the bright discs, as observed in CBED of volumetric materials, is well observed in particles larger of 500 nm in size. In addition, it is shown that the 1/3[422] and 1/2[311] weak forbidden reflections observed in the [111] and [112] electron diffraction patterns of these particles do not modify the symmetry of the CBED patterns, but they disappear as the size of the particle increases. The symmetry of the CBED patterns are always observed in concordance with the space group Fm3m (No. 225) of the Au unit cell. The possible explanations for observing forbidden reflections are the incomplete ABC stacking due to surface termination and the stacking faults in the fcc structure.

Author Biographies

Clemente Fernando-Marquez, Instituto de Física, Universidad Nacional Autónoma de México

Departamento de Materia Condensada

Gilberto Mondragón-Galicia, Instituto de Investigaciones Nucleares.

Departamento de Materiales

Lourdes Bazán-Díaz, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México

Laboratorio de Microscopía Electrónica

José Reyes-Gasga, Instituto de Física, Universidad Nacional Autónoma de México

Departamento de Materia Condensada


. B.G. Bagley, A dense packing of hard spheres with five-fold symmetry, Nature 208 (1965) 674-675. 10.1038/208674a0.

. S. Ino, Epitaxial growth of metals on rock salt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum, J. Japan Phys. Soc. 21 (1966) 346-362.

. L.D. Marks, and A. Howie, Multiply-twinned particles in silver catalysts, Nature 282 (1979) 196-198.

. C.Y. Yang, M. Jose-Yacaman, and K. Heinemann, Crystallography of decahedral and icosahedral particles, J. Cryst. Growth 47 (1979) 283-290.

. L.D. Marks, and D.J. Smith, Direct lattice imaging of small metal particles, Phil. Mag. A 44 (1981) 735-740.

. M. Jose-Yacaman, A. Mayoral, H. Barron, R. Estrada-Salas, and A. Vazquez-Duran, Nanoparticle stability from the nano to the meso interval, Nanoscale 2 (2010) 335-342.

. R.B. Neder, and T. Proffen, Diffuse scattering and defect structure simulations: A cook book using the program DISCUS. (Oxford: Oxford University Press), 2008. Print ISBN-13: 978019923364.

. R.V. Petrova, R.R. Vanflett, D.R. Richardson, B. Yao, and K.R. Coffey, Convergent beam electron diffraction of ordered L1o nanoparticles, Microsc. Microanal. 11 (2) (2005) 872-873.

. L.D. Romeu, and J. Reyes-Gasga, Interpretation of the nano-electron-diffraction patterns along the five-fold axis of decahedral gold nanoparticles, Microsc. Microanal. 17 (2011) 279–283.

. A. Bhattacharya, C. M. Parish, J. Henry, and Y. Katoh, High throughput crystal structure and composition mapping of crystalline nanoprecipitates in alloys by transmission Kikuchi diffraction and analytical electron microscopy, Ultramicroscopy 202 (2019) 33-43.

. D. Cherns, Direct resolution of surface atomic steps by transmission electron microscopy, Phil. Mag. 30 (1974) 549-556.

. J. Reyes-Gasga, A. Gomez-Rodriguez, X. Gao, and M. Jose-Yacaman, On the interpretation of the forbidden spots observed in the electron diffraction patterns of flat Au triangular nanoparticles, Ultramicroscopy 108 (2008) 929- 936.

. M. K. Singh, B. Mukherjee, and R. K. Mandal, Growth morphology and special diffraction characteristics of multifaceted gold nanoparticles, Micron 94 (2017) 46-52.

. S. Tehuacanero-Cuapa, R. Palomino-Merino, and J. Reyes-Gasga, CBED electron beam drilling and closing of holes in decahedral silver nanoparticles, Radiation. Phys. Chem. 87 (2013) 59-63.

. S. Tehuacanero-Cuapa, J. Reyes-Gasga, E.F. Brès, R. Palomino-Merino, and R. García-García, Holes drilling in gold and silver decahedral nanoparticles by the CBED electron-beam, J. Radiation Effects Defects Solids 169 (2014) 838- 844.

. D.W. Pashley, and M.J. Stowell, Electron microscopy and diffraction of twinned structures in evaporated films of gold, Phil. Mag. 8 (1963) 1605-1632.

. J.E. Davey, and R.H. Deiter, Structure in textured gold films, J. Appl. Phys. 36 (1965) 284.

. V. Castaño, A.Gomez, and M. Jose-Yacaman, Microdiffraction and surface structure of small gold particles, Surf. Sci. 146 (1984) L587-L592.

. D.W. Pashley, M.J. Stowell, M.H. Jacobs, and T.J. Law, The growth and structure of gold and silver deposits formed by evaporation inside and electron microscope, Phil. Mag. 10 (1964) 127.

. R.H. Morriss, W.R. Bottoms, and R.G. Peacock, Growth and defect structure of lamellar gold microcrystals. J. Appl. Phys. 39 (1968) 3016.

. R.L. Hines, Surface structures on thin gold and platinum crystals, Thin Solid Films 35 (1976) 229.

. J.C. Heyraud, and J.J. Metois, Anomalous 1/3(422) diffraction spots from {111} flat gold crystallites: (111) surface reconstruction and moiré fringes between the surface and the bulk, Surf. Sci. 100 (1980) 519-528.

. Y. Tanishiro, H. Kanamori, K. Takayanagi, K. Yagi, and G. Honjo, UHV transmission electron microscopy on the reconstructed surface of (111) gold: I. General features, Surf. Sci. 111 (1981) 395-413.

. A.I. Kirkland, D.A. Jefferson, D.G. Duff, P.P. Edwards, I. Gameson, B.F.G. Johnson, and D.J. Smith, Structural studies of trigonal lamellar particles of gold and silver, Proc. Royal Soc. A 440 (1993) 589. DOI: 10.1098/rspa.1993.0035.

. V. Germain, J. Li, D. Ingert, Z.L. Wang, and M.P. Pileni, Stacking faults in formation of silver nanodisks, J. Phys. Chem. B 107 (2003) 8717-8720.

. B. Rodriguez-Gonzalez, I. Pastoriza-Santos, and L.M. Liz-Marzan, Bending contours in silver nanoprisms, J. Phys. Chem. B 110 (2006) 11796-11799.

. Courty, A.I. Henry, N. Goubet, and M.P. Pileni, Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals, Nature Materials 6 (2007) 900-907.

. P. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan, Electron microscopy of thin crystals, (Krieger Publishing Company, New York) 1977. ISBN-13: 978-0882753768. ISBN-10: 0882753762.

. M.C. Mendoza-Ramirez, H.G. Silva-Pereyra, and M. Avalos-Borja, Hexagonal phase into Au plate-like particles: A precession electron diffraction study, Mater. Characterization 164 (2020) 110313.

. F. Fievet, J. Langier, B. Blin, B. Beaudoin, and M. Figlarz, Homogeneous and heterogeneous nucleation in the polyol process for the preparation of micron and submicron size metal particles, Solid State Ionics 32-33 (1989) 198-205.

. U. Santiago, J. Velazquez-Salazar, J.E. Sanchez, F. Ruiz-Zepeda, J.E. Ortega, J. Reyes-Gasga, L. Bazan-Diaz, I. Bentacourt, E.F. Rauch, M. Veron, A. Ponce, and M. Jose-Yacaman, A stable multiply twinned decahedral gold nanoparticle with barrel-like shape, Surf. Sci. 644 (2016) 80-85.

. D. B. Williams, and C. B. Carter, Transmission Electron Microscopy, A Textbook for Materials Science. Part 2: Diffraction, (Springer. Second Edition. New York), 2009. Chapter 20. ISBN 978-0-387-76502-0.

. X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C.L. Gan, F. Boey, C.A. Mirkin, and H. Zhang, Synthesis of hexagonal close-packed gold nanostructures, Nat. Commun. 2 (2011) Article 292.

. C. Wang, H. Wang, T. Huang, X. Xue, F. Qiu, and Q. Jiang, Generalized- stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: a first-principles calculation, Sci. Rep. 5 (2015) 1–11.