A comparison between thermal lens and conventional optical spectroscopy for monitoring of a photocatalytic process

Authors

  • Ernesto Marin Instituto Politécnico Nacional
  • L. A. Hernández-Carabalí Instituto Politécnico Nacional, CICATA Legaria
  • E. Cedeño Instituto Politécnico Nacional, CICATA Legaria
  • J. B. Rojas-Trigos Instituto Politécnico Nacional, CICATA Legaria
  • S. Alvarado Instituto Politécnico Nacional, CICATA Legaria
  • A. M. Mansanares Gleb Wataghin Physics Institute, U. of Campinas-UNICAMP
  • M. A. Isidro-Ojeda Instituto Politécnico Nacional, CICATA Legaria
  • E. Vargas Instituto Politécnico Nacional, CICATA Legaria
  • A. Calderón Instituto Politécnico Nacional, CICATA Legaria

DOI:

https://doi.org/10.31349/RevMexFis.68.021303

Keywords:

Thermal lens microscopy, optical absorption, photocatalysis, spectroscopy

Abstract

We compare the thermal lens (TLS) and the optical transmission (OT) spectroscopy techniques to monitor the kinetic of a photocatalytic reaction. For this, an OT measurement facility was added to a TLS set-up. The TLS was implemented in a microspatial configuration named thermal lens microscopy (TLM). Methylene blue (MB) in Water solutions were used as test samples within a concentration range in which both techniques show good sensibility. Within this range, the limit of detection obtained by TLM was about one order of magnitude lower than that achieved by OT. The methylene blue concentration evolution with photocatalytic reaction time was measured with both techniques, showing a good agreement between their results. A ZnO thin film deposited on a glass substrate by the spray pyrolysis technique was used as catalyst, and the reaction was induced by UV-violet light.

References

S.E. Bialkowski, et al., Photothermal Spectroscopy Methods, 2nd ed. (John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030 (1e, 1996) pp.1-38.

R.D. Snook, et al., Thermal lens spectrometry A Review, Analyst. 120 (1995) 2051, htts://doi.org/10.1039/an9952002051.

M. Liu, et al., Thermal Lens Spectrometry: Still a Technique on the Horizon?, Int. J. Thermophys. 37 (2016) 67, https://doi.org/10.1007/s10765-016-2072-y.

L. A. Hernandez-Carabalí, et al., Application of thermal lens microscopy (TLM) for measurement of Cr(VI) traces in wastewater. J. Environ. Manage. 232 (2019) 305, https://doi:10.1016/j.jenvman.2018.11.044.

R. D. Lowe, et al., Photobleaching of Methylene Blue in continuous wave thermal lens spectrometry. The Analyst, 118 (1993) 613, https://doi:10.1039/an9931800613.

T. Kitamori, et al., Peer Reviewed: Thermal Lens Microscopy and Microchip Chemistry. Anal. Chem. 76 (2004) 52, https://doi:10.1021/ac041508d.

H. Cabrera, et al., Thermal lens microscope sensitivity enhancement using a passive Fabry-Perot-type optical cavity, Laser Phys. Lett. 13 (2016) 055702, https://doi.org/10.1088/1612-2011/13/5/055702.

E. Cedeño, et al., High sensitivity thermal lens microscopy: CrVI trace detection in water. Talanta. 170 (2017) 260, https://doi.org/10.1016/j.talanta.2017.04.008.

E Cedeño, et al., In-situ monitoring by thermal lens microscopy of a photocatalytic reduction process of hexavalent chromium. Rev. Mex. Fis. 64 (2018) 507, https://doi.org/10.31349/RevMexFis.64.507.

S. S. M. Hassan, et al., Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv. Nat. Sci: Nanosci. Nanotechnol 6 (2015) 045012, https://doi:10.1088/2043-6262/6/4/045012.

S. Janitabar-Darzi, et al., Investigation of structural, optical and photocatalytic properties of mesoporous TiO2 thin film synthesized by sol-gel templating technique, Physica E Low Dimens. Syst. Nanostruct. 42 (2009) 176, https://doi.org/10.1016/j.physe.2009.10.006.

K.M. Lee, et al., Recent developments of zinc oxide based photocatalyst in water treatment technology: A review, Water Res. 88 (2016) 428, https://doi.org/10.1016/j.watres.2015.09.045.

S. Hullavarad, et al., Persistent photoconductivity studies in nanostructured ZnO UV sensors, Nanoscale Res. Lett. 4 (2009) 1421, https://doi.org/10.1007/s11671-009-9414-7.

A. Akyol, et al., Photocatalytic degradation of Remazol Red F3B using ZnO catalyst, J. Hazard. Mater. 124 (2005) 241, https://doi.org/10.1016/j.jhazmat.2005.05.006.

M. Ahmad, et al., Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis, Curr. Appl. Phys. 13 (2013) 697, https://doi.org/10.1016/j.cap.2012.11.008.

L. A. Hernandez-Carabalí et al., Monitoring the advanced oxidation of paracetamol using ZnO films via capillary electrophoresis. J. Water Process. Eng. 41 (2021) 102051 https://doi.org/10.1016/j.jwpe.2021.102051.

E. Bernal, Advances in Gas Chromatography, (Ed. J. Calvin Giddings and Roy A. Keller. Marcel Dekker. 1974), pp 58-77

Z.Z. Vasiljevic, et al., Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method: Methylene blue degradation with Fe2TiO5, R. Soc. Open Sci. 7 (2020) 200708, https://doi.org/10.1098/rsos.200708.

M. Irani, et al., Photocatalytic degradation of methylene blue with ZnO nanoparticles; a joint experimental and theoretical

study, J. Mex. Chem. Soc. 60 (2016) 218, https://doi.org/10.29356/jmcs.v60i4.115.

C. Yang, et al., Highly efficient photocatalytic degradation of methylene blue by PoPD/TiO2 nanocomposite, PLoS One. 12 (2017). 0174104, https://doi.org/10.1371/journal.pone.0174104.

J.J. Murcia Mesa, et al., Methylene blue degradation over MTiO2 photocatalysts (M= Au or Pt), Ciencia En Desarrollo, 8 (2017) 109, https://doi.org/10.19053/01217488.v8.n1.2017.5352.

H.A. Le, et al., Photocatalytic degradation of methylene blue by a combination of TiO 2-anatase and coconut shell activated carbon, Powder Technol. 225 (2012) 167, https://doi.org/10.1016/j.powtec.2012.04.004.

M.A. Acosta-Esparza, et al., UV and Visible light photodegradation of methylene blue with graphene decorated titanium dioxide, Mater. Res. Express. 7 (2020) 035504, https://doi.org/10.1088/2053-1591/ab7ac5.

F. Azeez, et al., The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Sci. Rep. 8 (2018) 7104, https://doi.org/10.1038/s41598-018-25673-5.

K.A. Isai, V.S. Shrivastava, Photocatalytic degradation of methylene blue using ZnO and 2%Fe-ZnO semiconductor nanomaterials synthesized by sol-gel method: a comparative study, J. Water Environ. Nanotechnol. 4 (2019) 251, https://doi.org/10.22090/JWENT.2019.03.008.

Z. Amali, et al., Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2,

Sci. World J. 2014 (2014) 415136, https://doi.org/10.1155/2014/415136.

Z. Ebrahimpour, et al., Photodegradation mechanisms of reactive blue 19 dye under UV and simulated solar light irradiation, Spectrochim. Acta A Mol. Biomol. 252 (2021) 119481, https://doi.org/10.1016/j.saa.2021.119481.

D. Blaˇzeka, et al., Photodegradation of Methylene Blue and Rhodamine B Using Laser-Synthesized ZnO Nanoparticles, Materials. 13 (2020) 4357, https://doi.org/10.3390/ma13194357.

C. Xu, et al., Photocatalytic Degradation of Methylene Blue by Titanium Dioxide: Experimental and Modeling Study, Ind. Eng. Chem. Res. 53 (2014) 38, https://doi.org/10.1021/ie502367x.

C. Hou, B. Hu, J. Zhu, Photocatalytic Degradation of Methylene Blue over TiO2 Pretreated with Varying Concentrations of NaOH, Catalysts. 8 (2018) 575, https://doi.org/10.3390/catal8120575.

A. Houas, et al., Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B: Environ. 31 (2001) 145, https://doi.org/10.1016/S0926-3373(00)00276-9.

F. Kazemi, et al., Photodegradation of methylene blue with a titanium dioxide / polyacrylamide photocatalyst under sunlight, J. Appl. Polym. Sci. 133 (2016) 43386, https://doi.org/10.1002/app.43386.

C. Yang, et al., Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD, RSC Adv. 7 (2017) 3973, https://doi.org/10.1038/s41598-017-04398-x.

N. Soltani, et al., Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles, Int. J. Mol. Sci. 13 (2012) 12242, https://doi.org/10.3390/ijms131012242.

S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts, Nanoscale Res Lett. 4 (2009) 709, https://doi.org/10.1007/s11671-009-9300-3.

J. Shen, R. D. Lowe and R. D. Snook R D A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry Chem. Phys. 165 (1992) 385, https://doi.org/10.1016/0301-0104(92)87053-C.

A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto and T. Catunda Optimizing and calibrating a mode-mismatched

thermal lens experiment for low absorption measurement J. Opt. Soc. Am. B. 23 (2006) 1408, https://doi.org/10.1364/josab.23.001408.

Downloads

Published

2022-03-01

How to Cite

[1]
E. Marin, “A comparison between thermal lens and conventional optical spectroscopy for monitoring of a photocatalytic process”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 021303 1–, Mar. 2022.