The Masses of Heavy Pentaquarks in Non-Relativistic Bethe-Salpeter Quark Model

Authors

  • M. abu-shady Faculty of Science. Menoufia Un. Egypt
  • N. H. Gerish Suez Canal University
  • M. M. A. Ahmed Al-Azhar University

DOI:

https://doi.org/10.31349/RevMexFis.68.010801

Keywords:

Pentaquarks, antiquark, two-diquark

Abstract

The exotic particles such as the pentaquarks are to strengthen understanding of important interactions and the principle of QCD in which pentaquarks contain two heavy- valence quarks. The structure of two bodies including an antiquark and two-diquark is introduced. A new potential for quark interaction is suggested which includes the logarithm potential, the linear potential, and the spin-spin interaction. The suggested potential is included in the framework of spinless of Bethe-Salpeter equation. A comparison with other works is presented which provides a good description of pentaquarks.

References

M. Abu-Shady, Chiral logarithmic quark model of N and ∆ with an A-term in the mean-field approximation, Int. J. Mod.

Phys. A 26 (2011) 235, https://doi.org/10.1142/S0217751X11051469.

M. Abu-Shady, Effect of logarithmic mesonic potential on nucleon properties, Mod. Phys. Lett. A 24 (2009) 1617, https://doi.org/10.1142/S0217732309030278.

M. Abu-Shady, The effect of finite temperature on the nucleon properties in the extended linear sigma model, Int. J. Mod. Phys. E 21 (2012) 1250061, https://doi.org/10.1142/S0218301312500619.

M. Abu-Shady, Nucleon Properties Below the Critical Point Temperature, Int. J. Theor. Phys. 50 (2011) 1372, https://doi.org/10.1007/s10773-010-0646-1.

M. Abu-Shady and E. M. Khokha, Heavy-Light Mesons in the Nonrelativistic Quark Model Using Laplace Transformation Method, Adv. High Energy Phys. 2018 (2018) 7032041, https://doi.org/10.1155/2018/7032041.

M. Abu-Shady and Sh. Y. Ezz-Alarab, Trigonometric RosenMorse Potential as a Quark-Antiquark Interaction Potential for Meson Properties in the Nonrelativistic Quark Model Using EAIM, Few-Body Syst. 60 (2019) 66, https://doi.org/10.1007/s00601-019-1531-y.

M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 (1964) 214, https://doi.org/10.1016/S0031-9163(64)92001-3.

R. L. Jaffe, Exotica, Phys. Rep. 409 (2005) 1, https://doi.org/10.1016/j.physrep.2004.11.005; Nucl. Phys. B Proc. Suppl. 142 (2005) 343, https://doi.org/10.1016/j.nuclphysbps.2005.01.058.

M. Yu. Barabanov et al., Diquark correlations in hadron physics: Origin, impact and evidence, Prog. Part. Nucl. Phys. 116 (2021) 103835, https://doi.org/10.1016/j.ppnp.2020.103835.

R. J. Jaffe, Multiquark hadrons I. Phenomenology of Q 2Q 2 mesons, Phys. Rev. D 15 (1977) 267, https://doi.org/10.1103/PhysRevD.15.267.

M. Tanabashi et al., (Particle Data Group), Review of Particle Physics, Phys. Rev. D 98 (2018) 030001, https://doi.org/10.1103/PhysRevD.98.030001.

P. Colangelo, F. De Fazio, F. Giannuzzi, and S. Nicotri, New meson spectroscopy with open charm and beauty, Phys. Rev. D 86 (2012) 054024, https://doi.org/10.1103/PhysRevD.86.054024.

A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97 (2017) 123, https://doi.org/10.1016/j.ppnp.2017.08.003.

M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark States, Annu. Rev. Nucl. Part. Sci. 68 (2018) 17, https://doi.org/10.1146/annurev-nucl-101917-020902.

H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hiddencharm pentaquark and tetraquark states, Phys. Rep. 639 (2016) 1, https://doi.org/10.1016/j.physrep.2016.05.004.

S.-K. Choi et al., (Belle Collaboration), Observation of a Narrow Charmoniumlike State in Exclusive B ± → K±π+π−J/ψ Decays, Phys. Rev. Lett. 91 (2003) 262001, https://doi.org/10.1103/PhysRevLett.91.262001.

S. J. Brodsky and R. F. Lebed, QCD dynamics of tetraquark production, Phys. Rev. D 91 (2015) 114025, https://doi.org/10.1103/PhysRevD.91.114025.

R. Aaij et al. (LHCb Collaboration), Observation of J/ψp Resonances Consistent with Pentaquark States in Λ 0 b → J/ψK−p Decays, Phys. Rev. Lett. 115 (2015) 072001, https://doi.org/10.1103/PhysRevLett.115.072001.

R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. B 966 (2021) 115393, https://doi.org/10.1016/j.nuclphysb.2021.115393.

C. Becchi, J. Ferretti, A. Giachino, L. Maiani, and E. Santopinto, A study of cccc tetraquark decays in 4 muons and in D (∗)D (∗) at LHC, Phys. Lett. B 811 (2020) 135952, https://doi.org/10.1016/j.physletb.2020.135952.

S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90 (2018) 015003, https://doi.org/10.1103/RevModPhys.90.015003.

R. Zhu and C.-F. Qiao, Pentaquark states in a diquark-triquark model, Phys. Lett. B 756 (2016) 259, https://doi.org/10.1016/j.physletb.2016.03.022.

Z.-G. Wang, Analysis of the doubly heavy baryon states and pentaquark states with QCD sum rules, Eur. Phys. J. C 78 (2018) 826, https://doi.org/10.1140/epjc/s10052-018-6300-4.

Q.-S. Zhou, K. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, Surveying exotic pentaquarks with the typical QQqqq configuration, Phys. Rev. C 98 (2018) 045204, https://doi.org/10.1103/PhysRevC.98.045204.

R. Aaij et al., (LHCb Collaboration), Observation of a Narrow Pentaquark State Pc(4312)+, and of the Two-Peak Structure of the Pc(4450)+, Phys. Rev. Lett. 122 (2019) 222001, https://doi.org/10.1103/PhysRevLett.122.222001.

R. Aaij et al. (LHCb Collaboration), Model-Independent Evidence for J/ψp Contributions to Λ 0 b → J/ψpK− Decays, Phys. Rev. Lett. 117 (2016) 082002, https://doi.org/10.1103/PhysRevLett.117.082002.

T. J. Burns and E. S. Swanson, Molecular interpretation of the Pc(4440) and Pc(4457) states, Phys. Rev. D 100 (2019) 114033, https://doi.org/10.1103/PhysRevD.100.114033.

R. D. Matheus, F. S. Navarra, M. Nielsen, and R. Rodrigues da Silva, Pentaquark masses in QCD sum rules, Nucl. Phys. B Proc. Suppl. 152 (2006) 228, https://doi.org/10.1016/j.nuclphysbps.2005.08.043.

T. Inoue, V. E. Lyubovitskij, Th. Gutsche, and A. Faessler, Mass spectrum of the J P = 1/2 − and 3/2 − pentaquark antidecuplets in the perturbative chiral quark model, Int. J. Mod. Phys. E 14 (2005) 995, https://doi.org/10.1142/S0218301305003752.

E. Santopinto and A. Giachino, Compact pentaquark structures, Phys. Rev. D 96 (2017) 014014, https://doi.org/10.1103/PhysRevD.96.014014.

R. Bijker, M. M. Giannini, and E. Santopinto, Spectroscopy of pentaquark states, Eur. Phys. J. A 22 (2004) 319, https: //doi.org/10.1140/epja/i2003-10232-x.

M. Karliner and H. J. Lipkin, A diquark-triquark model for the KN pentaquark, Phys. Lett. B 575 (2003) 249, https://doi.org/10.1016/j.physletb.2003.09.062.

L. Maiani, A. D. Polosa, and V. Riquer, The new pentaquarks in the diquark model, Phys. Lett. B 749 (2015) 289, https://doi.org/10.1016/j.physletb.2015.08.008.

F. Giannuzzi, Heavy pentaquark spectroscopy in the diquark model, Phys. Rev. D 99 (2019) 094006, https://doi.org/10.1103/PhysRevD.99.094006.

S. M. M. Nejad and A. Armat, Determination of the Mass and the Energy Spectra of Heavy Pentaquarks in the Diquark Model, Few-Body Syst. 61 (2020) 31, https://doi.org/10.1007/s00601-020-01564-2.

Y. Chargui, On an approximation of the two-body spinless Salpeter equation, Eur. Phys. J. Plus 133 (2018) 543, https://doi.org/10.1140/epjp/i2018-12420-4.

S. Rahmani, H. Hassanabadi, and H. Sobhani, Mass and decay properties of double heavy baryons with a phenomenological potential model, Eur. Phys. J. C 80 (2020) 312, https://doi.org/10.1140/epjc/s10052-020-7867-0.

A. Armat and H. Hassanabadi, Study of ground state binding energies of the single Ξ and Λ hypernuclei by using numerical computation, Can. J. Phys. 95 (2017) 1086, https://doi.org/10.1139/cjp-2017-0011.

Downloads

Published

2022-01-01

How to Cite

[1]
M. abu-shady, N. H. Gerish, and M. M. A. Ahmed, “The Masses of Heavy Pentaquarks in Non-Relativistic Bethe-Salpeter Quark Model”, Rev. Mex. Fís., vol. 68, no. 1 Jan-Feb, pp. 010801 1–, Jan. 2022.