An inexpensive contact angle measurement system

Authors

  • Musa Faruk Cakir Çankırı Karatekin University

DOI:

https://doi.org/10.31349/RevMexFis.68.021001

Keywords:

Contact angle measurement system, contact angle, wettability, acrylic

Abstract

In this study, a new and cost-effective contact angle measurement system has been developed. As direct application of this easy-to-use measuring system, the wettability behavior of acrylic polymers was analyzed by dropping a saline solution of 2.4 M on acrylic materials, where contact angle measurements were made.

References

J. M. Schuster, C. E. Schvezov, and M. R. Rosenberger, Influence of experimental variables on the measure of contact angle in metals using the sessile drop method. Procedia Materials Science. 8 (2015) 742, htts://doi.org/10.1016/j.mspro.2015.04.131.

J. Jin, X. Wang, and M. Song, Graphene-Based Nanostructured Hybrid Materials for Conductive and Superhydrophobic Functional Coatings, J. Nanosci. Nanotechnol. 11 (2011) 7715, htts://doi.org/10.1166/jnn.2011.4730.

T. M. Schutzius, I. S. Bayer, M. K. Tiwari, and C. M. Megaridis, Novel Fluoropolymer Blends for the Fabrication of Sprayable

Multifunctional Superhydrophobic Nanostructured Composites, Ind. Eng. Chem. Res. 50 (2011) 11117, htts://doi.org/10.1021/ie200814r.

N. Encinas, M. Pantoja, J. Abenojar, and M. A. Mart´ınez, Control of Wettability of Polymers by Surface Roughness Modification, J. Adhes. Sci. Technol. 24 (2010) 1869, htts://doi.org/10.1163/016942410X511042.

J.-U. Kim, et al., Effect of electrolyte in electrospun poly (vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells. 93 (2009) 803, htt://doi.org/10.1016/j.solmat.2008.09.045.

L. R. Freschauf, J. McLane, H. Sharma, and M. Khine, Shrinkinduced superhydrophobic and antibacterial surfaces in consumer plastics, PLOS ONE 7 (2012) e40987. htts://doi.org/10.1371/journal.pone.0040987.

C. R. Crick, S. Ismail, J. Pratten, and I. P. Parkin, An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films 519 (2011) 3722. htts://doi.org/10.1016/j.tsf.2011.01.282.

C.-H. Xue, J. Chen, W. Yin, S.-T. Jia, and J-Z. Ma, Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles, Appl. Surf. Sci.. 258 (2012) 2468, htts://doi.org/10.1016/j.apsusc.2011.10.074.

D. R. Bijwe et al., Complex dielectric behavior of doped polyaniline conducting polymer at microwave frequencies using time domain reflectometry, Rev. Mex. Fis.. 65 (2019) 590, htts://doi.org/10.31349/revmexfis.65.590.

P. Calcagnile et al., Magnetically driven floating foams for the removal of oil contaminants from water, ACS Nano. 6 (2012)

, htts://doi.org/10.1021/nn3012948.

M. Karhan, Experimental investigation of wettability and evaporation for the surface of PMMA dielectric material used

in high-voltage applications and outdoor electrical applications.Appl Phys. A, 127 (2021) 462. htts://dx.doi.org/10.1007/s00339-021-04630-6.

H. Budunoglu, A. Yildirim, M.O. Guler, and M. Bayindir, Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films, ACS Appl. Mater. Interface 3 (2011) 539, htts://doi.org/10.1021/am101116b.

M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange and M.F. Sigot-Luizard, Correlation between substratum roughness and wettability, cell adhesion, and cell migration.J. Biomed. Mater. Res. 36 (1998) 99, htts://doi.org/10.1002/(SICI)1097-4636(199707)36:1h99::AID-JBM12i3.0.CO;2-E.

T. M. Schutzius, M. K. Tiwari, I. S. Bayer, and C. M. Megaridis, High strain sustaining, nitrile rubber based, large-area, superhydrophobic, nanostructured composite coatings, Compos. Part A Appl. Sci. Manuf. 42 (2011) 979, htts://doi.org/10.1016/j.compositesa.2011.03.026.

T. Verho et al., Mechanically durable superhydrophobic surfaces, Adv. Mater.. 23 (2011) 673, htts://doi.org/10.1002/adma.201003129.

S. Farhadi, M. Farzaneh, and S.A. Kulinich, Anti-icing performance of superhydrophobic surfaces, Appl. Surf. Sci. 257 (2011) 6264, htts://doi.org/10.1016/j.apsusc.2011.02.057.

L. Ionov and A. Synytska, Self-healing superhydrophobic materials, Phys. Chem. Chem. Phys. 14 (2012) 10497, htts://doi.org/10.1039/C2CP41377A.

M. Karhan, M. F. C¸ akır, and O. Arslan, Investigation of the effect of roughness value on the wettability behavior under electric feld in XLPE materials used in medium and high voltage applications, Electr. Eng. 103 (2021) 3225, htts://doi.org/10.1007/s00202-021-01326-1.

H. Gu et al., Investigation on contact angle measurement methods and wettability transition of porous surfaces. Surf. Coat.

Technol. 292 (2016) 72. htts://doi.org/10.1016/j.surfcoat.2016.03.014.

M. Karhan, M. F. C¸ akır, O. Arslan, F. Iss ¨ ´ı, and V. Eyupoglu, Effect of electric field on contact angle and droplet shape in XLPE dielectric materials, J. Fac. Eng. Archit. Gazi Univ.. 36 (2021) 1747, htts://doi.org/10.17341/gazimmfd.700362.

A.W. Neumann, R.J. Good, C.J. Hope, and M.J. Sejpal, An equation-of-state approach to determine surface tensions of low-energy solids from contact angles, Colloid Interface Sci. 49 (1974) 291, htts://doi.org/10.1016/0021-9797(74)90365-8.

F.-M. Chang, S.-J. Hong, Y.-J. Sheng, and H.-K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects, Appl. phys. lett.. 95 (2009) 064102, htts://doi.org/10.1063/1.3204006.

R. Tadmor, Line energy and the relation between advancing, receding and Young contact angles, Langmuir. 20 (2004) 7659,

htts://doi.org/10.1021/la049410h.

C. Antonini, A. Amirfazli, and M. Marengo, Drop impact and wettability: From hydrophilic to superhydrophobic surfaces, Phys. Fluids. 24 (2012) 102104. htts://doi.org/10.1063/1.4757122.

B. J. Ryan, and K. M. Poduska, Roughness effects on contact angle measurements, Am. J. Phys.. 76 (2008) 1074. htts://doi.org/10.1119/1.2952446.

S. Galindo and F. Urena-N ˜ u´nez, Enhanced surface hydrophobicity of poly (lactic acid) by Co60 gamma ray irradiation, Rev.

Mex. Fis.. 64 (2018) 1. https://doi.org/10.31349/RevMexFis.64.1

Downloads

Published

2022-03-01

How to Cite

[1]
M. F. Cakir, “An inexpensive contact angle measurement system”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 021001 1–, Mar. 2022.