Preparation, thermal analysis, and crystal structure refinement of the quaternary alloy (CuIn)2NbTe5

Authors

  • P. Grima-Gallardo Universidad de Los Andes
  • M. Palmera Centro Nacional de Tecnolog´ıas O´ pticas y Centro de Investigaciones de Astronom´ıa
  • J. A. Aitken Duquesne University
  • J. Cisterna Universidad de Antofagasta
  • I. Brito Universidad de Antofagasta
  • Gerzon E. Delgado Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad De Los Andes, Mérida, Venezuela http://orcid.org/0000-0003-3970-2387

DOI:

https://doi.org/10.31349/RevMexFis.68.010502

Keywords:

Chalcogenide, P -chalcopyrite, chemical synthesis, crystal structure, thermal analysis

Abstract

The quaternary alloy (CuIn)2NbTe5 was synthesized by solid-state reaction using the melt and annealing technique. The thermal analysis shows that this compound melts at 1026 K. The present alloy is isotypic with Cu2FeIn2Se5 and crystallizes in the space group P2c (Nº 112), with unit cell parameters a = 6.1964(2) Å, c = 12.4761(4) Å, c/a = 2.01, V = 479.02(3) Å3. (CuIn)2NbTe5, belonging to the system (CuInSe2)1-x(FeSe)x with x= ⅓, is a new adamantane compound with a P-chalcopyrite structure. This structure is characterized by a double alternation of anions-cations layers according to the Te-Te : Nb-In-Nb-In : Cu-In-Cu-In : Te-Te sequence, along the 010 direction.

References

S. Siebentritt, Chalcopyrite compound semiconductors for thin-film solar cells, Curr. Opin. Green Sustainable Chem. 4 (2017) 1. https://dx.doi.org/10.1016/j.cogsc.2017.02.001.

G. Regmi et al., Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review, J Mater. Sci.-Mater. Electron. 31 (2020) 7286, https://doi.org/10.1007/s10854-020-03338-2.

J. Yang, Q. Fan, and X. Cheng, Prediction for electronic, vibrational, and thermoelectric properties of chalcopyrite AgX(X=In, Ga)Te2: PBE+U approach, R. Soc. Open Sci. 4 (2017) 170750, https://dx.doi.org/10.1098/rsos.170750.

H. Ahmoum et al., Electronic and thermoelectric properties of chalcopyrite compounds Cu2(XY)S4 (X = Zn, Cd, and Y= Sn, Pb): a first-principles study, Indian J. Phys. 95 (2021) 281, https://doi.org/10.1007/s12648-020-01698-3.

C.Wang et al., Tetrahedral distortion and thermoelectric performance of the Ag-substituted CuInTe2 chalcopyrite compound,

ACS Appl. Energy Mater. 3 (2020) 11015, https://doi.org/10.1021/acsaem.0c01867.

M. Singh et al., Chalcopyrite nanoparticles as a sustainable thermoelectric material. Nanomaterials 5 (2015) 1820. https://doi.org/10.3390/nano5041820.

S. Mukherjee et al., Tuning the thermoelectric properties of chalcopyrite by Co and Se double substitution, AIP Conf. Proc. 2115 (2019) 030574, htts://doi.org/10.1063/1.5113413.

W. Feng, D. Xiao, J. Ding, and Y. Yao, Three-dimensional topological insulators in I-III-VI2 and II-IV-V2 chalcopyrite semiconductors. Phys Rev. Lett. 106 (2011) 016402. https://doi.org/10.1103/PhysRevLett.106.016402.

Z. Zhuolei, X. Beibei, Z. Lin, and R. Shenqiang, Hybrid chalcopyrite-polymer magnetoconducting materials, ACS Appl. Mater. Interfaces 8 (2016) 11215, https://doi.org/10.1021/acsami.6b03362.

X. Li and J. Yang, First-principles design of spintronics materials, Natl. Sci. Rev. 3 (2016) 365, https://doi.org/10.1093/nsr/nww026.

P. Grima-Gallardo, G. E. Delgado, E. P´erez-Capp´e, J. A. Aitken, and D. Prakash Rai. Synthesis, X-ray diffraction, and magnetic measurements of Cu(Ni, Co)2InS4 alloys: superconductor behavior of CuCo2InS4, Rev. LatinAm. Metal. Mat. 40 (2020) 131.

P. Grima-Gallardo et al., Superconductivity observation in a (CuInTe2)1-x(NbTe)x alloy with x = 0:5, Adv. Mat. Sci. Technol. 7 (2013) 1.

X. Yang et al., Pressure-induced superconductivity bordering a charge-density-wave state in NbTe4 with strong spin-orbit

coupling, Sci. Rep. 8 (2018) 6298, https://doi:10.1038/s41598-018-24572-z.

D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Neutron scattering study of the charge-density-wave transitions in 2H-TaSe2 and

H-NbSe2, Phys. Rev. B 16 (1977) 801, https://doi.org/10.1103/PhysRevB.16.801.

R. C. Morris, R. V. Coleman, and R. Bhandari, Superconductivity and magnetoresistance in NbSe2, Phys. Rev. B 5 (1972) 895. https://doi.org/10.1103/PhysRevB.5.895.

F. R. Gamble, F. J. DiSalvo, R. A. Klemm, and T. H. Geballe, Superconductivity in layered structure organometallic crystals,

Science 168 (1970) 568, https://doi.org/10.1126/science.168.3931.568.

X. C. Pan et al., Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride.

Nat. Commun. 6 (2015) 7805, https://doi.org/10.1038/ncomms8805.

D. Kang et al., Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride, Nat.

Commun. 6 (2015) 7804. https://doi.org/10.1038/ncomms8804.

G. E. Delgado, P. Grima-Gallardo, J. A. Aitken, A. C´ardenas, and I. Brito, The new P-chalcopyrite compound Cu2FeIn2Se5; synthesis, thermal analysis (DTA), and crystal structure analysis by X-ray powder diffraction (XRPD), Rev. Mex. F´ıs. 67 (2021) 18, https://doi.org/10.31349/RevMexFis.67.18.

P. Grima-Gallardo, S. Dur´an, M. Mu˜noz, D. P. Rai, and G. E. Delgado, (Cu0:4Al0:3)TaSe2: Preparation and crystal structure analysis from X-ray powder diffraction, South. Braz. J. of Chem. 28 (2020) 1, https://www.deboni.he.com.br/sbjchem/jornal/2020v2/01 DELGADO pgs 01 06.pdf.

P. Grima-Gallardo et al., (CuAlSe2)1¡x(TaSe)x alloy system (0 · x · 0:5): X-ray diffraction, differential thermal analysis and scanning electron microscopy measurements, Rev. LatinAm. Metal. Mat. 41 (2021) 34, https://www.rlmm.org/ojs/index.php/rlmm/article/view/1071.

P. Grima-Gallardo et al., X-ray diffraction, scanning electron microscopy and differential thermal analysis of (CuGaSe2)1¡x (TaSe)x alloys system (0 · x · 0:5). Senhri J. Multidiscip. Stud. 5 (2020) 1. https://doi.org/10.36110/sjms.2020.05.01.001.

K. S. Knight, The crystal structures of CuInSe2 and CuInTe2, Mater. Res. Bull. 27 (1992) 161. https://doi.org/10.1016/0025-5408(92)90209-I.

R. Liu et al., Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun. 48 (2012) 3818, https://doi.org/10.1039/C2CC30318C.

S. Altaf et al., Comparative study of selenides and tellurides of transition metals (Nb and Ta) with respect to its catalytic,

antimicrobial, and molecular docking performance, Nanoscale Res. Lett. 15 (2020) 144. https://doi.org/10.1186/s11671-020-03375-0.

B. E. Brown, The crystal structures of NbTe2 and TaTe2, Acta Cryst. 20 (1966) 264, https://doi.org/10.1107/S0365110X66000501.

E. Revolinsky, B. E. Brown, D. J. Beerntsen, and C. H. Armitage, The selenide and telluride systems of niobium and tantalum, J. Less-Common Met. 8 (1965) 63. https://doi.org/10.1016/0022-5088(65)90058-5.

S. Nagata, T. Abe, S. Ebisu, Y. Ishihara, and K. Tsutsumi, Superconductivity in the metallic layered compound NbTe2. J. Phys. Chem. Solids 54 (1993) 895. https://doi.org/10.1016/0022-3697(93)90215-D.

S. Stonemeyer et al., Stabilization of NbTe3, VTe3, and TiTe3 via nanotube encapsulation. J. Am. Chem. Soc. 143 (2021) 4563, https://doi:10.1021/jacs.0c10175.

X. Yang et al., Pressure-induced superconductivity bordering a charge-density-wave state in NbTe4 with strong spin-orbit

coupling, Sci. Rep. 8 (2018) 6298, https://doi:10.1038/s41598-018-24572-z.

E. Guerrero, M. Quintero, M. Delgado, and J.C. Woolley. T (z) Diagram and optical energy gap values of Cd1¡zMnzIn2Te4 alloys, Phys. Stat. Sol. A 129 (1992) K83, https://doi.org/10.1002/pssa.2211290231.

I. V. Bodnar, I. A. Viktorov, and I. A. Zabelina, Synthesis of CuGaxIn1¡xTe2 solid solutions and their physicochemical properties, Russ. J. Inorg. Chem. 38 (1993) 809. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4770613.

A. Boultif and D. Lou¨er, Powder pattern indexing with the dichotomy method, J. Appl. Cryst. 37 (2004) 724, https://doi.org/10.1107/S0021889804014876.

T. Roisnel and J. Rodr´ıguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis, Mater. Sci. For.

-381 (2001) 118, https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2 (1969) 65, https://doi.org/10.1107/S0021889869006558.

J. Rodr´ıguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B 192 (1993) 55, https://doi.org/10.1016/0921-4526(93)90108-I.

G. Caglioti, A. Paoletti, and F. P. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction, Nucl. Instrum. 3 (1958) 223, https://doi.org/10.1016/0369-643X(58)90029-X.

P. Thompson, D. E. Cox, and J. B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3, J. Appl. Cryst. 20 (1987) 79, https://doi.org/10.1107/S0021889887087090.

E. Parth´e, Wurtzite and Sphalerite Structures, in Intermetallic Compounds, edited by J. H. Westbrook and R. L. Fleischer, Vol. 1 (John Wiley and Sons, Chichester, 1995).

W. H¨onle, G. K¨uhn, and U.-C. Boehnke, Crystal structures of two quenched Cu-In-Se phases, Cryst. Res. Technol. 23 (1988) 1347, https://doi.org/10.1002/crat.2170231027.

I. D. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Cryst. B 41 (1985) 244, https://doi.org/10.1107/S0108768185002063.

N. E. Brese and M. O’Keeffe, Bond-valence parameters for solids, Acta Cryst. B 47 (1991) 192, https://doi.org/10.1107/S0108768190011041.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (1976) 751, https://doi.org/10.1107/S0567739476001551.

J. Zio’lkowski, New relation between Ionic Radii, Bond Length, and Bond Strength, J. Solid State Chem. 57 (1985) 269, https://doi.org/10.1016/0022-4596(85)90152-5.

T. S¨orgel and M. Jansen, Structure refinement, physical properties and electronic structure of new electrochemically copper

intercalated group Vb ditellurides CuxMTe2 (M=V, Nb, Ta), Solid State Sci. 6 (2004) 1259, https://doi.org/10.1016/j.solidstatesciences.2004.07.017.

G. E. Delgado et al., Synthesis and characterization of the ternary chalcogenide compound Cu3NbTe4, Chalcogenide Lett. 6 (2009) 335, https://chalcogen.ro/335Delgado.pdf.

A. J, Mora, G. E. Delgado, C. Pineda, and T. Tinoco, Synthesis and structural study of the AgIn5Te8 compound by Xray powder diffraction, Phys. Stat. Sol. (a) 201 (2004) 1477. https://doi.org/10.1002/pssa.200406805.

G. E. Delgado, A. J. Mora, C. Pineda, R. Avila-Godoy, S. Paredes-Dugarte, X-ray powder diffraction data and Rietveld refinement of the ternary semiconductor chalcogenides AgInSe2 and AgInTe2, Rev. LatinoAm. Met. Mater. 35 (2015) 110. https://www.rlmm.org/ojs/index.php/rlmm/article/view/546.

G. E. Delgado, C. Rinc´on, and G. Marroquin, On the crystal structure of the ordered vacancy compound Cu3In5Te9, Rev. Mex. Fis. 65 (2019) 360, https://doi.org/10.31349/RevMexFis.65.360.

G. E. Delgado, E. Guedez, G. S´anchez-P´erez, C. Rinc´on, and G. Marroquin, Evidence of a new ordered vacancy crystal structure in the compound Cu3In7Te12, Materia 24 (2019) e12329. https://doi.org/10.1590/s1517-707620190001.0643.

G. E. Delgado et al., Crystal structure of the quaternary compound CuTa2InTe4 from X-ray powder diffraction. Physica B 403 (2008) 3228. https://doi.org/10.1016/j.physb.2008.04.022.

G. E. Delgado et al., Structural characterization of two new quaternary chalcogenides: CuCo2InTe4 and CuNi2InTe4, Mater. Res. 19 (2016) 1423. https://doi.org/10.1590/1980-5373-mr-2016-0098.

G. E. Delgado et al., Crystal structure and powder Xray diffraction data of the super-paramagnetic compound CuFeInTe34, Rev. Mex. Fis. 67 (2021) 305. https://doi.org/10.31349/RevMexFis.67.305

Downloads

Published

2022-01-01