Synthesis and structural characterization using the Rietveld method of the quaternary compound CuAlGeSe4

Authors

  • Gerzon E. Delgado Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad De Los Andes, Mérida, Venezuela http://orcid.org/0000-0003-3970-2387
  • Miguel Quintero

DOI:

https://doi.org/10.31349/RevMexFis.68.020501

Keywords:

chalcogenide, powder X-ray diffraction data, crystal structure

Abstract

Sample of the quaternary phase CuAlGeSe4, a member of the I-III-IV--VI4 semiconductor system, was synthesized by the melt and annealing technique and analyzed using X-ray powder diffraction data. The indexing and refinement of the pattern indicate that this compound crystallizes in the tetragonal system, space group I (Nº82) with unit cell parameters: a = 5.5646(3) Å, c = 10.682(2) Å, V = 330.77(5) Å3. The space group was established from a cationic and anionic distribution analysis in the tetragonal space groups: I2d (Nº 122), I2m (Nº 121), and I (Nº 82), for an ordered structure in this material. The Rietveld refinement, performed with the starting model: Cu 2c, Al 2b, Ge 2d, 2a, and Se 8g, converged to Rexp= 7.2%, RP = 7.4%, Rwp = 9.6%, and χ2 = 1.7.

References

S. Chen et al., Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors, Phys. Rev. B 82 (2010) 195203. http://dx.doi.org/10.1103/PhysRevB.82.195203.

H. Katagir, Development of CZTS-based thin film solar cells, Thin Solid Films 517 (2009) 2455. https://doi.org/10.1016/j.tsf.2008.11.002.

C. Coughlan, Compound copper chalcogenide nanocrystals, Chem. Rev. 117 (2017) 5865. https://doi.org/10.1021/acs.chemrev.6b00376.

P. Kush and S. Deka, Multifunctional copper-based quaternary chalcogenide semiconductors toward state-of-the-art energy applications, Chem. Nano. Mat 5 (2019) 373. https://doi.org/10.1002/cnma.201800321.

A. Walsh, S. Chen, S. Wei, X. Gong, Kesterite thin-film solar cells: Advances in materials modelling of Cu2ZnSnS4, Adv. Energ. Mater. 2 (2012) 400. https://doi.org/10.1002/aenm.201100630.

W. Chen et al., Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B 82 (2010) 195203. https://doi.org/10.1103/PhysRevB.82.195203.

G. E. Delgado, and V. Sagredo, Synthesis and crystal structure of the quaternary semiconductor Cu2NiGeS4, a new stannitetype compound, Rev. Mex. Fis. 65 (2019) 355. https://doi.org/10.31349/revmexfis.65.355.

K. Shen, X. Zhang, H. Lu, and Z. Jiao, Numerical study of the defect adamantine compound CuGaGeSe4, Mol. Phys. 116 (2018) 1551. https://doi.org/10.1080/00268976.2018.1433338.

K. Shen, H. Lu, X. Zhang, and Z. Jiao, Numerical study of the electronic structure, elastic and optical properties of defect

quaternary semiconductor CuGaSnSe4, Results Phys. 9 (2018) 49. https://doi.org/10.1016/j.rinp.2018.02.004.

A. S. Hassanien, H. R. Alamri, and I. M. El Radaf, Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition, Opt. Quantum Electron. 52 (2020) 335. https://doi.org/10.1007/s11082-020-02448-9.

E. Parthe, Wurtzite and Sphalerite Structures, in Intermetallic Compounds, edited by J. H. Westbrook and R. L. Fleischer, Vol. 1 (John Wiley and Sons, Chichester, 1995).

O. H. Hughes, J. C. Woolley, S. A. Lopez-Rivera, and B. R. Pamplin, Quaternary adamantine selenides and tellurides of the form I III IV VI4, Solid State Commun. 35 (1980) 573. https://doi.org/10.1016/0038-1098(80)90585-2.

J. C. Woolley, R. G. Goodchild, O. H. Hughes, S. A. Lopez-Rivera, and B. R. Pamplin, Quaternary defect chalcopyrite compounds I III IV VI4, Jpn. J. Appl. Phys. 19 (1980) 145. https://doi.org/10.7567/JJAPS.19S3.145.

R. G. Goodchild, O. H. Hughes, and J. C. Woolley, Crystal structure of I-III-IV-Se4 compounds, Phys. Status Solidi (a), 68 (1981) 239. https://doi.org/10.1002/pssa.2210680132.

H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, J. Cryst. Growth 208 (2000) 416. https://doi.org/10.1016/S00220248(99)00468-6.

G. P. Gorgut et al., Synthesis and structural properties of CuInGeS4, J. Cryst. Growth 324 (2011) 212. https://doi.org/10.1016/j.jcrysgro.2011.02.0.

I. D. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal

Structure Database, Acta Cryst. B 41 (1985) 244, https://doi.org/10.1107/S0108768185002063.

N. E. Brese and M. O’Keeffe, Bond-valence parameters for solids, Acta Cryst. B 47 (1991) 192, https://doi.org/10.1107/S0108768190011041.

A. Boultif and D. Louer, Powder pattern indexing with the dichotomy method, J. Appl. Cryst. 37 (2004) 724, https://doi.org/10.1107/S0021889804014876.

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2 (1969) 65, https://doi.org/10.1107/S0021889869006558.

J. Rodr´ıguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B 192 (1993) 55, https://doi.org/10.1016/0921-4526(93)90108-I.

G. Caglioti, A. Paoletti, and F. P. Ricci, Choice of collimators for a crystal spectrometer for neutron diffraction, Nucl. Instrum. 3 (1958) 223, https://doi.org/10.1016/0369-643X(58)90029-X.

P. Thompson, D. E. Cox, and J. B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3, J. Appl. Cryst. 20 (1987) 79, https://doi.org/10.1107/S0021889887087090.

A. D. Mighell, C. R. Hubbard, and J. K. Stalick, NBS*AIDS: NBS (USA), Tech. Note 1141 1981.

ICDD-PDF, International Centre for Diffraction Data-Powder Diffraction File (Set 1-65), 12 Campus Boulevard, Newtown

Square, PA, USA (2019).

K. S. Knight, The crystal structures of CuInSe2 and CuInTe2, Mater. Res. Bull. 27 (1992) 161, https://doi.org/101016/00255408(92)90209-I.

X. A. Chen, H. Wada, A. Sato, and H. Nozaki, Synthesis, structure, and electronic properties of Cu2SiQ3 (Q=S, Se), J. Alloys Comp. 290 (1999) 91. https://doi.org/10.1016/S0925-8388(99)00208-X.

G. E. Delgado, A. J. Mora, G. Marcano, and C. Rincon, Crystal structure refinement of the semiconducting compound

Cu2SnSe3 from X-ray powder diffraction data, Mater. Res. Bull. 38 (2003) 1949. https://doi.org/10.1016/j.materresbull.2003.09.017.

L. D. Gulay, Ya. E. Romanyuk, and O. V. Parasyuk, Crystal structures of low-and high-temperature modifications of Cu2CdGeSe4, J. Alloys Comp. 347 (2002) 193. https://doi.org/10.1016/S0925-8388(02)00790-9.

I. D. Olekseyuk et al., Single crystal preparation and crystal structure of the Cu2Zn/Cd, Hg/SnSe4 compounds, J. Alloys Comp. 340 (2002) 141. https://doi.org/10.1016/S0925-8388(02)00006-3.

A.J. Mora, G.E. Delgado and P. Grima-Gallardo, Crystal structure of CuFeInSe3 from X-ray powder diffraction data, Phys. Stat. Solidi (a), 204 (2007) 547. https://doi.org/10.1002/pssa.200622395.

G.E. Delgado, A.J. Mora, P. Grima-Gallardo and M. Quintero, Crystal structure of CuFe2InSe4 from X-ray powder diffraction, J. Alloys Comp. 454 (2008) 306. https://doi.org/10.1016/j.jallcom.2006.12.057.

G. E. Delgado, P. Grima-Gallardo, J. A. Aitken, A. Cardenas, and I. Brito, The new P-chalcopyrite compound Cu2FeIn2Se5;

synthesis, thermal analysis, and crystal structure analysis by Xray powder diffraction, Rev. Mex. Fis. 67 (2021) 18. https://doi.org/10.31349/RevMexFis.67.18.

G. Krauss, V. Kraemer, A. Eifler, V. Riede and S. Wenger,

Growth and characterization of CdAl2S4 and CdAl2Se4 single

crystals, Cryst. Res. Technol. 32 (1997) 223. https://doi.

org/10.1002/crat.2170320202.

H. Schwer and V. Kraemer, Structure refinement of HgAl2Se4,

Z. Kristallogr. 194 (1991) 121. https://doi.org/10.

/zkri.1991.194.14.121.

G. E. Delgado, E. Quintero, R. Tovar, and M. Quintero,

X-ray powder diffraction study of the semiconducting alloy

Cu2Cd0.5Mn0.5GeSe4, Cryst. Res. Technol. 39 (2004) 807.

https://doi.org/10.1002/crat.200310257.

Downloads

Published

2022-03-01

How to Cite

[1]
G. E. Delgado and M. Quintero, “Synthesis and structural characterization using the Rietveld method of the quaternary compound CuAlGeSe4”, Rev. Mex. Fís., vol. 68, no. 2 Mar-Apr, pp. 020501 1–, Mar. 2022.