First-principles study of electronic structures, thermodynamic, and thermoelectric properties of the new Rattling Full Heusler compounds Ba2AgZ (Z = As, Sb, Bi)
DOI:
https://doi.org/10.31349/RevMexFis.67.060501Keywords:
Heusler compounds, density functional theory, electronic structures, thermodynamic properties, thermoelectric propertiesAbstract
The ab initio calculations based on the density functional theory (DFT) using the self-consistent Full potential linearized augmented plane wave (FPLAPW) method were performed to explore the electronic structures, thermodynamic and thermoelectric properties of new rattling Full Heusler alloys Ba2AgZ (Z = As, Sb, Bi). Results showed that the AlCu2Mn-type structure state is energetically the most stable structure. The results show that the electronic property of these cubic Rattling Heusler alloys have a semiconducting behavior with indirect band gaps Eg (L-D). The predicted band gaps were found to be 0.566, 0.548 and 0.433 eV for Z = As, Sb and Bi, respectively. The thermodynamic properties comprising the thermal expansion coefficient, heat capacity, entropy and Debye temperature parameter were evaluated at various pressures from 0 to 15 GPa. Thermoelectric properties of the Ba2AgZ (Z= As, Sb, Bi) materials are additionally computed over an extensive variety of temperature and it is discovered that all compounds exhibit ultralow thermal conductivity, good Seebeck coefficients and large high power factors, thus resulting they are suitable for use in thermoelectric device applications.
References
E. Sasioglu, L.M. Sandratskii, P. Bruno, and I. Galanakis, Exchange interactions and temperature dependence of magnetization in half-metallic Heusler alloys, Phys. Rev. B, 72 (2005) 184415. https://doi.org/10.1103/PhysRevB.72.184415
H. Ishikawa, Y. Sutou, T. Omori, and K. Ishida, Pd-In-Fe shape memory alloy, Appl. Phys. Lett., 90 (2007) 261906. https://doi.org/10.1063/1.2749440
B. Wiendlocha, M.J. Winiarski, M. Muras, C. Zvoriste-Walters, J.C. Griveau, S. Heathman, M. Gazda, and T. Klimczuk, Pressure effects on the superconductivity of the HfPd2Al Heusler compound: Experimental and theoretical study, Phys. Rev. B, 91 (2015) 024509. https://doi.org/10.1103/PhysRevB.91.024509
C. Felser, G. H. Fecher, and B. Balke, Spintronics: A Challenge for Materials Science and Solid-State Chemistry, Angew. Chem. Int. Ed. 46 (2007) 668. https://doi.org/10.1002/anie.200601815
C.S. Lue, J.W. Huang, D.S. Tsai, K.M. Sivakumar, and Y.K. Kuo, Effects of Ge substitution on the thermoelectric properties and pseudogap characteristics of Fe2VGa, J. Phys.: Condens. Matter, 20 (2008) 255233. https://doi.org/10.1088/0953-8984/20/25/255233
S. Yousuf, and D.C. Gupta, Ternary germanide Li2ZnGe: A new candidate for high temperature thermoelectrics, J. Alloys
Comp., 25 (2018), 501. https://doi.org/10.1016/j.jallcom.2017.12.211
S Yousuf, and D C Gupta, Investigation of electronic, magnetic and thermoelectric properties of Zr2NiZ (Z=Al,Ga) ferromagnets, Mater. Chem. Phys., 192 (2017) 33e40
M. Mikami, Y. Kinemuchi, K. Ozaki, Y. Terazawa, and T. Takeuchi, Thermoelectric properties of tungsten-substituted Heusler Fe2VAl alloy, J. Appl. Phys., 111 (2012) 093710. https://dx.doi.org/10.1063/1.4710990
B. Ramachandran, Y.H. Lin, Y.K. Kuo, C.N. Kuo, A.A. Gippius, and C.S. Lueb, Thermoelectric properties of Heusler-type Ru2VAl1−xGax alloys, Intermetallics, 92 (2018) 36. https://doi.org/10.1016/j.intermet.2017.09.012
Y. Nishino, S. Deguchi, and U. Mizutani, Thermal and transport properties of the Heusler-type Fe2VAl1−xGex (0 ≤ x ≤ 0.20) alloys: Effect of doping on lattice thermal conductivity, electrical resistivity, and Seebeck coefficient, Phys. Rev. B, 74 (2006) 115115. https://doi.org/10.1103/PhysRevB.74.115115
M. Vasundhara, V. Srinivas, and V.V. Rao, Electronic transport in Heusler-type Fe2VAl1−xMx alloys (M = B, In, Si), Phys. Rev. B, 77 (2008) 224415. https://doi.org/10.1103/PhysRevB.77.224415
E. J. Skoug, C. Zhou, Y. Pei, and D.T. Morelli, High Thermoelectric Power Factor Near Room Temperature in Full-Heusler Alloys, J. Electron. Mater., 38 (2009) 1221. https://doi.org/10.1007/s11664-008-0626-x
D.I. Bilc, G. Hautier, D. Waroquiers, G.M. Rignanese, and P. Ghosez, Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States, Phys. Rev. Lett., 114 (2015) 136601. https://doi.org/10.1103/PhysRevLett.114.136601
J. He et al., Ultralow thermal conductivity in full Heusler semiconductors, Phys. Rev. Lett., 117 (2016) 046602. https://doi.org/10.1103/PhysRevLett.117.046602
M. Matougui et al., Rattling Heusler Semiconductors Thermoelectric Properties: First-principles prediction, Chinese J. Phys. 57 (2018) 195. https://doi.org/10.1016/j.cjph.2018.11.015
M. Mana, F. Bendahma, and N. Benderdouche, Ab-initio investigation of optoelectronic and thermoelectric properties in new p-type Rattling Heuslers Sr2PtX (X= Se and Te), Comput. Condens. Matter, 25 (2020) e00497. https://doi.org/10.1016/j.cocom.2020.e00497
P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 136 (1964) B864. https://doi.org/10.1103/PhysRev.136.B864
W. Kohn, and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. B, 140 (1965) A1133. https://doi.org/10.1103/PhysRev.140.A1133
J.C. Slater, Energy Band Calculations by the Augmented Plane Wave Method, Adv. Quantum Chem., 1 (1964) 35. https://doi.org/10.1016/S0065-3276(08)60374-3
P. Blaha, K. Schwartz, G.K.H. Madsen, D. Kvasnicka, and J. Liutz, WIEN2k An Augmented Plane Wave Plus Local OrbitalsProgram for calculating Cristal Properties (Vienna University of Technology, Vienna, Austria, 2001).
J. P. Perdew, S. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 7 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
S. Ouardi, G.H. Fecher, C. Felser, and J. Kubler, Realization of Spin Gapless Semiconductors: The Heusler Compound Mn2CoAl, Phys. Rev. Lett. 110 (2013) 100401. https://doi.org/10.1103/PhysRevLett.110.100401
X.T Wang et al., Electronic structures and magnetism of Rh3Z (Z=Al, Ga, In, Si, Ge, Sn, Pb, Sb) with DO3 structures, J. Magn. Magn. Mater., 378 (2015) 16. https://doi.org/10.1016/j.jmmm.2014.10.161
A. Otero-de-la-Roza, D. Abbasi-Perez, and V. Luana, GIBBS2: ´ A new version of the quasiharmonic model code. II. models
for solid-state thermodynamics, features and implementation, Comput. Phys. Commun., 182 (2011) 2232. https://doi.org/10.1016/j.cpc.2011.05.009
M.A. Blanco, A. Mart´ın Pendas, E. Francisco, J.M. Recio, and R. Franco, Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3, J. Mol. Struct. Theochem., 368 (1996) 245. https://doi.org/10.1016/S0166-1280(96)90571-0
M. Florez, J.M. Recio, E. Francisco, M.A. Blanco, A. Mart´ın Pendas, First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B, 66 (2002) 144112. https://doi.org/10.1103/PhysRevB.66.144112
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. London A 65 (1952) 349. htts://doi.org/10.1088/0370-1298/65/5/307
G. K. H. Madsen, and D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun., 175 (2006) 67. htts://doi.org/10.1016/j.cpc.2006.03.007
T.M. Bhat and D.C. Gupta, Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy, J. Electron. Mater., 45 (2016) 6012. https://doi.org/10.1007/s11664-016-4827-4
G.A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids, 34 (1973) 321. https://doi.org/10.1016/0022-3697(73)90092-9
J.S. Tse, Z. Li, and K. Uehara, Phonon band structures and resonant scattering in Na8Si46 and Cs8Sn44 clathrates, Europhys. Lett., 56 (2001) 261. https://doi.org/10.1209/epl/i2001-00515-8
Y. He, and G. Galli, Nanostructured Clathrate Phonon Glasses: Beyond the Rattling Concept, Nano Lett., 14 (2014) 2920. https://doi.org/10.1021/nl501021m
T. Takeuchi, Mater. Trans., 50 (2009) 2359. https://doi.org/10.2320/matertrans.M2009143
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Kalaliz Kheira, A. Chahed, M. A. Boukli, M. A. Khettir, A. Oughilas, A. Sayede
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.